Skip to main content

Reasoning Geo-Spatial Neutral Similarity from Seismic Data Using Mixture and State Clustering Models

  • Conference paper
  • First Online:
Geographical Information Systems Theory, Applications and Management (GISTAM 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 582))

Abstract

Conventionally, earthquake events are recognized by guided and well established geographical region confines. However, explicit regional schemes are prone to overlook patterns manifested by cross-boundary seismic relations that are regarded vital to seismological research. Rather, we investigate a statistically motivated system that clusters earthquake impacted places by similarity in seismic feature space, and is hence impartial to geo-spatial proximity constraints. To facilitate our study, we have acquired hundreds of thousands recordings of earthquake episodes that traverse an extended time period of forty years. Episodes are split into groups singled out by their affiliated geographical place, and from each, we have extracted objective seismic features expressed in both a compact term-frequency of scales format, and as a discrete signal representation that captures magnitude samples spaced in regular time intervals. Attribute vectors of the distributional and temporal domains are further applied towards our mixture model and Markov chain frameworks, respectively, to conduct clustering of presumed unlabeled, shake affected locations. We performed comprehensive cluster analysis and classification experiments, and report robust results that support the intuition of geo-spatial neutral similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: International Symposium on Information Theory, Budapest, pp. 267-281 (1973)

    Google Scholar 

  2. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press Series/Addison Wesley, Essex (1999)

    Google Scholar 

  3. Baum, L.E.: An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. In: Symposium on Inequalities, Los Angeles, pp. 1-8 (1972)

    Google Scholar 

  4. Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 37(6), 1554–1563 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cormen, T.H., Leiserson, C.H., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press/McGraw-Hill Book Company, Cambridge (1990)

    MATH  Google Scholar 

  6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  7. Duda, R.O., Hart, P.E., Stork, D.G.: Unsupervised learning and clustering. In: Pattern Classification, pp. 517–601. Wiley, New York (2001)

    Google Scholar 

  8. Flinn-Engdahl Seismic and Geographic Regionalization Scheme (2000). http://earthquake.usgs.gov/learn/topics/flinn_engdahl.php

  9. Fraley, C., Raftery, A.E.: Bayesian regularization for normal mixture estimation and model-based clustering. J. Class. 24(2), 155–181 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fraley, C., Raftery, A.E.: Model-based clustering, discriminant analysis and density estimation. J. Am. Stat. Assoc. 97(458), 611–631 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. GeoJSON Format for Encoding Geographic Data Structures (2007). http://geojson.org/

  12. Hough, S.E.: Earthquake intensity distribution: a new view. Bull. Earthq. Eng. 12(1), 135–155 (2014)

    Article  Google Scholar 

  13. Johnson, S.C.: Hierarchical clustering schemes. J. Psychom. 32(3), 241–254 (1967)

    Article  Google Scholar 

  14. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)

    Book  Google Scholar 

  15. Langfelder, P., Zhang, B., Horvath, S.: Defining clusters from a hierarchical cluster tree: the dynamic tree cut library for R. J. Bioinform. 24(5), 719–720 (2007)

    Article  Google Scholar 

  16. Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  17. Manning, C.D., Schutze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (2000)

    Google Scholar 

  18. Mclachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  19. Mclachlan, G.J., Basford, K.E.: Mixture Models: Inference and Applications to Clustering. Marcel Dekker, New York (1988)

    MATH  Google Scholar 

  20. Ngatchou-Wandji, J., Bulla, J.: On choosing a mixture model for clustering. J. Data Sci. 11(1), 157–179 (2013)

    MathSciNet  Google Scholar 

  21. R Project for Statistical Computing (1997). http://www.r-project.org/

  22. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  23. Rajaraman, R., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, New York (2011)

    Book  Google Scholar 

  24. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)

    Article  MATH  Google Scholar 

  25. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MATH  Google Scholar 

  26. Theodoridis, Y.: SEISMO-SURFER: a prototype for collecting, querying, and mining seismic data. In: Manolopoulos, Y., Evripidou, S., Kakas, A.C. (eds.) PCI 2001. LNCS, vol. 2563, pp. 159–171. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  27. United States Geological Survey (USGS) (2004). http://earthquake.usgs.gov/earthquakes/feed/v1.0/

  28. Ward, J.H.: Hierarchical grouping to optimize an objective function. Am. Stat. Assoc. 58(301), 236–244 (1963)

    Article  Google Scholar 

  29. Young, J.B., Presgrave, B.W., Aichele, H., Wiens, D.A., Flinn, E.A.: The Flinn-Engdahl regionalization scheme: the 1995 revision. Phys. Earth Planet. Inter. 96(4), 223–297 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their insightful and helpful feedback on our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avi Bleiweiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bleiweiss, A. (2016). Reasoning Geo-Spatial Neutral Similarity from Seismic Data Using Mixture and State Clustering Models. In: Grueau, C., Gustavo Rocha, J. (eds) Geographical Information Systems Theory, Applications and Management. GISTAM 2015. Communications in Computer and Information Science, vol 582. Springer, Cham. https://doi.org/10.1007/978-3-319-29589-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29589-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29588-6

  • Online ISBN: 978-3-319-29589-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics