Skip to main content

Column Generation Integer Programming for Allocating Jobs with Periodic Demand Variations

  • Conference paper
  • First Online:
Algorithmic Aspects of Cloud Computing (ALGOCLOUD 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9511))

Included in the following conference series:

Abstract

In the context of service hosting in large-scale datacenters, we consider the problem faced by a provider for allocating services to machines. An analysis of a public Google trace corresponding to the use of a production cluster over a long period shows that long-running services experience demand variations with a periodic (daily) pattern, and that services with such a pattern account for most of the overall CPU demand. This leads to an allocation problem where the classical Bin-Packing issue is augmented with the possibility to co-locate jobs whose peaks occur at different times of the day, which is bound to be more efficient than the usual approach that consist in over-provisioning for the maximum demand. In this paper, we propose a column-generation approach to solving this problem, where the subproblem uses a sophisticated SOCP (Second Order Cone Program) formulation. This allows to explicitely select jobs which benefit from being co-allocated together. Experimental results comparing with theoretical lower bounds and with standard packing heuristics shows that this approach is able to provide very efficient assignments in reasonable time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., et al.: Above the clouds: a Berkeley view of cloud computing, University of California, Berkeley (2009)

    Google Scholar 

  2. Aron, M., Druschel, P., Zwaenepoel, W.: Cluster reserves: a mechanism for resource management in cluster-based network servers. In: Proceedings of the ACM SIGMETRICS Conference, pp. 90–101 (2000)

    Google Scholar 

  3. Beaumont, O., Eyraud-Dubois, L., Lorenzo-Del-Castillo, J.-A.: Analyzing real cluster data for formulating allocation algorithms in cloud platforms. In: 2014 IEEE 26th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), pp. 302–309 (2014)

    Google Scholar 

  4. Beaumont, O., Belaid, I., Eyraud-Dubois, L., Lorenzo-Del-Castillo, J.-A.: Allocating jobs with periodic demand variations. EuroPar 2015, (February 2015)

    Google Scholar 

  5. Beaumont, O., Eyraud-Dubois, L., Rejeb, H., Thraves, C.: Heterogeneous resource allocation under degree constraints. IEEE Trans. Parallel Distrib. Syst. (2012)

    Google Scholar 

  6. Beloglazov, A., Buyya, R.: Energy efficient allocation of virtual machines in cloud data centers. In: IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, pp. 577–578. IEEE (2010)

    Google Scholar 

  7. Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for managing SLA violations. In: 10th IFIP/IEEE International Symposium on Integrated Network Management, IM 2007, pp. 119–128 (2007)

    Google Scholar 

  8. Calheiros, R.N., Buyya, R., De Rose, C.A.F.: A heuristic for mapping virtual machines and links in emulation testbeds. In: Proceedings of International Conference on Parallel Processing (ICPP), pp. 518–525. IEEE (2009)

    Google Scholar 

  9. Cirne, W., Frachtenberg, E.: Web-scale job scheduling. In: Cirne, W., Desai, N., Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2012. LNCS, vol. 7698, pp. 1–15. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  11. Hochbaum, D.: Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, Boston (1997)

    Google Scholar 

  12. Mittelmann, H.D.: An independent benchmarking of SDP and SOCP solvers. Math. Program. 95(2), 407–430 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Towards understanding heterogeneous clouds at scale: Google trace analysis. Technical report ISTC–CC–TR–12–101, Intel science and technology center for cloud computing, Carnegie Mellon University, Pittsburgh, PA, USA, April 2012. http://www.istc-cc.cmu.edu/publications/papers/2012/ISTC-CC-TR-12-101.pdf

  14. Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage traces: format + schema. Technical report, Google Inc., Mountain View, CA, USA, November 2011. Revised 20 March 2012. http://code.google.com/p/googleclusterdata/wiki/TraceVersion2

  15. Shahabuddin, J., Chrungoo, A., Gupta, V., Juneja, S., Kapoor, S., Kumar, A.: Stream-packing: resource allocation in web server farms with a QoS guarantee. In: Monien, B., Prasanna, V.K., Vajapeyam, S. (eds.) HiPC 2001. LNCS, vol. 2228, pp. 182–191. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Urgaonkar, B., Shenoy, P., Roscoe, T.: Resource overbooking, application profiling in shared hosting platforms. SIGOPS Oper. Syst. Rev. 36(SI), 239–254 (2002)

    Article  Google Scholar 

  17. Vanderbeck, F.: On dantzig-wolfe decomposition in integer programming and ways to perform branching in a branch-and-price algorithm. Oper. Res. 111–128 (2000)

    Google Scholar 

  18. Wilkes, J.: More Google cluster data. Google research blog, November 2011. http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html

  19. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research challenges. J. Internet Serv. Appl. 1(1), 7–18 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikbel Belaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Belaid, I., Eyraud-Dubois, L. (2016). Column Generation Integer Programming for Allocating Jobs with Periodic Demand Variations. In: Karydis, I., Sioutas, S., Triantafillou, P., Tsoumakos, D. (eds) Algorithmic Aspects of Cloud Computing. ALGOCLOUD 2015. Lecture Notes in Computer Science(), vol 9511. Springer, Cham. https://doi.org/10.1007/978-3-319-29919-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29919-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29918-1

  • Online ISBN: 978-3-319-29919-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics