Skip to main content

A Hybrid Approach for Individual and Group Activity Analysis in Crowded Scene

  • Conference paper
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 598))

  • 1194 Accesses

Abstract

This paper presents an efficient hybrid (top-down and bottom-up) framework for activity recognition based on analyzing group context in crowded scenes. The approach presented starts by discovering interacting groups of people using a graph based clustering algorithm. Given the interacting groups, a novel group context activity descriptor is computed that captures not only the focal person’s activity but also the behaviors of neighbors in the group. Finally, for a high-level of understanding of human activities, we propose a bottom-up approach using a random field model to encode activity relationships between people in the scene. We evaluate our approach on two public benchmark datasets and compare the utility of our proposed descriptor with other descriptors using the same baseline recognition framework. The results of both the steps show that our approach with the proposed descriptor achieves recognition rates comparable to state-of-the-art methods for activity recognition in crowded scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ryoo, M., Aggarwal, J.: Stochastic representation and recognition of high-level group activities. Int. J. Comput. Vis. 93, 183–200 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Tran, K.N.: Contextual descriptors for human activity recognition, Ph.D. Thesis, University of Houston (2013)

    Google Scholar 

  3. Zhou, B., Tang, X., Wang, X.: Learning collective crowd behaviors with dynamic pedestrian-agents. Int. J. Comput. Vis. 111(1), 50–68 (2015). doi:10.1007/s11263-014-0735-3

    Article  Google Scholar 

  4. Yi, S., Wang, X., Lu, C., Jia, J.: L0 regularized stationary time estimation for crowd group analysis. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 2219–2226 (2014). doi:10.1109/CVPR.2014.284

  5. Tran, K., Gala, A., Kakadiaris, I., Shah, S.: Activity analysis in crowded environments using social cues for group discovery and human interaction modeling. Pattern Recogn. Lett. 44, 49–57 (2014). Pattern Recognition and Crowd Analysis

    Article  Google Scholar 

  6. Smith, K., Ba, S., Odobez, J.-M., Gatica-Perez, D.: Tracking the visual focus of attention for a varying number of wandering people. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1212–1229 (2008)

    Article  Google Scholar 

  7. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phy. Rev. E 51(5), 4282–4286 (1995)

    Article  Google Scholar 

  8. Cristani, M., Bazzani, L., Paggetti, G., Fossati, A., Tosato, D., Bue, A.D., Menegaz, G., Murino, V.: Social interaction discovery by statistical analysis of f-formations. In: Proceedings of the British Machine Vision Conference, pp. 23.1–23.12 (2011)

    Google Scholar 

  9. Tran, K., Yan, X., Kakadiaris, I., Shah, S.: A group contextual model for activity recognition in crowded scenes. In: Proceedings of the International Conference on Computer Vision Theory and Applications (2015)

    Google Scholar 

  10. Lan, T., Wang, Y., Yang, W., Robinovitch, S., Mori, G.: Discriminative latent models for recognizing contextual group activities. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1549 (2012)

    Article  Google Scholar 

  11. Choi, W., Shahid, K., Savarese, S.: What are they ng? : collective activity classification using spatio-temporal relationship among people. In: Proceedings Visual Surveillance Workshop, ICCV, pp. 1282–1289 (2009)

    Google Scholar 

  12. Choi, W., Shahid, K., Savarese, S.: Learning context for collective activity recognition. In: Proceedings of the Computer Vision and Pattern Recognition, Spring CO, USA, pp. 3273–3280 (2011)

    Google Scholar 

  13. Amer, M.R., Todorovic, S.: A chains model for localizing participants of group activities in videos. In: Proceedings of the IEEE International Conference on Computer Vision (2011)

    Google Scholar 

  14. Khan, S.M., Shah, M.: Detecting group activities using rigidity of formation. In: Proceedings of the ACM International Conference on Multimedia, MULTIMEDIA 2005, NY, USA, pp. 403–406. ACM, New York (2005). http://doi.acm.org/10.1145/1101149.1101237. doi:10.1145/1101149.1101237

  15. Vaswani, N., Roy Chowdhury, A., Chellappa, R.: Activity recognition using the dynamics of the configuration of interacting objects. In: Proceedings of the Computer Vision and Pattern Recognition, vol. 2, pp. II-633–II-40 (2003). doi:10.1109/CVPR.2003.1211526

  16. Chang, M.-C., Krahnstoever, N., Lim, S., Yu, T.: Group level activity recognition in crowded environments across multiple cameras. In: Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance, DC, USA, pp. 56–63 (2010)

    Google Scholar 

  17. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: Proceedings of the Computer Vision and Pattern Recognition, pp. 935–942 (2009). doi:10.1109/CVPR.2009.5206641

  18. Farenzena, M., Tavano, A., Bazzani, L., Tosato, D., Pagetti, G., Menegaz, G., Murino, V., Cristani, M.: Social interaction by visual focus of attention in a three-dimensional environment. In: Proceedings of the Workshop on Pattern Recognition and Artificial Intelligence for Human Behavior Analysis at AI*IA (2009)

    Google Scholar 

  19. Farenzena, M., Bazzani, L., Murino, V., Cristani, M.: Towards a subject-centered analysis for automated video surveillance. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 481–489. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Lan, T., Sigal, L., Mori, G.: Social roles in hierarchical models for human activity recognition. In: Proceedings of the Computer Vision and Pattern Recognition, pp. 1354–1361 (2012). doi:10.1109/CVPR.2012.6247821

  21. Hoiem, D., Efros, A., Hebert, M.: Putting objects in perspective. In: Proceedings of the Computer Vision and Pattern Recognition, vol. 2, pp. 2137–2144 (2006) doi:10.1109/CVPR.2006.232

  22. Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal. Mach. Intell. 29, 167–172 (2007)

    Article  Google Scholar 

  23. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

    Article  Google Scholar 

  24. Wang, H., Klaser, A., Schmid, C., Liu, C.-L.: Action recognition by dense trajectories. In: Proceedings of the Computer Vision and Pattern Recognition, pp. 3169–3176 (2011). doi:10.1109/CVPR.2011.5995407

  25. Tran, K., Kakadiaris, I., Shah, S.: Part-based motion descriptor image for human action recognition. Pattern Recogn. 45(7), 2562–2572 (2012)

    Article  Google Scholar 

  26. Amer, M.R., Xie, D., Zhao, M., Todorovic, S., Zhu, S.-C.: Cost-sensitive top-down/bottom-up inference for multiscale activity recognition. In: Proceedings of the European Conference on Computer Vision, pp. 187–200 (2012)

    Google Scholar 

  27. Was, J., Gudowski, B., Matuszyk, P.J.: Social distances model of pedestrian dynamics. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 492–501. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)

    Article  Google Scholar 

  29. Mooij, J.M.: libDAI: a free and open source C++ library for discrete approximate inference in graphical models. J. Mach. Learn. Res. 11, 2169–2173 (2010)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US Department of Justice 2009-MU-MU-K004. Any opinions, findings, conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of our sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Tran, K.N., Yan, X., Kakadiaris, I.A., Shah, S.K. (2016). A Hybrid Approach for Individual and Group Activity Analysis in Crowded Scene. In: Braz, J., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2015. Communications in Computer and Information Science, vol 598. Springer, Cham. https://doi.org/10.1007/978-3-319-29971-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29971-6_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29970-9

  • Online ISBN: 978-3-319-29971-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics