Skip to main content

Choosing Visualization Techniques for Multidimensional Data Projection Tasks: A Guideline with Examples

  • Conference paper
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2015)

Abstract

This paper presents a guideline for visualization designers who want to choose appropriate techniques for enhancing tasks involving multidimensional projection. Specifically, we adopt a user-centric approach in which we take user perception into consideration. Here, we focus on projection techniques that output 2D or 3D scatterplots that can then be used for a range of common data analysis tasks, which we categorize as pattern identification tasks, relation-seeking tasks, membership disambiguation tasks, or behavior comparison tasks. Our user-centric task categorization can be used to effectively guide the organization of multidimensional data projection layouts. Moreover, we present real-world examples that demonstrate effective choices made by visualization designers faced with complex datasets requiring dimensionality reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CBR comprises 680 documents, which include title, authors, abstract, and references from scientific papers in the four different subjects, leading to a data set with 680 objects and 1,423 dimensions. KDViz data has been generated from an Internet repository on the topics bibliographic coupling, co-citation analysis, milgrams, and information visualization, leading to 1,624 objects, 520 dimensions, and four highly unbalanced labels (http://vicg.icmc.usp.br/infovis2/DataSets).

  2. 2.

    1,000 photographs on ten different themes. Each image is represented by a 150-dimensional vector of SIFT descriptors (3UCI KDD Archive, http://kdd.ics.uci.edu).

  3. 3.

    Each image is represented by 28 features, including Fourier descriptors and energies derived from histograms, as well as mean intensity and standard deviation computed from the images themselves. Hence, the data set contains 540 objects and 28 dimensions.

  4. 4.

    ETHZ represents a subset of the ETHZ dataset [13, 38], with 2019 photographs of different people captured in uncontrolled conditions. It is divided into 28 unbalanced groups, and each image is represented by a vector of 3963 descriptors, combining Gabor filters, Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP) and mean intensity.

References

  1. Ahuja, N., Tuceryan, M.: Extraction of early perceptual structure in dot patterns: integrating region, boundary, and component gestalt. Comput. Vision Graph. Image Process. 48(3), 304–356 (1989)

    Article  Google Scholar 

  2. Albuquerque, G., Eisemann, M., Magnor, M.: Perception-based visual quality measures. In Proceedings of IEEE Symposium on Visual Analytics Science and Technology (VAST), pp. 13–20 (2011)

    Google Scholar 

  3. Amar, R., Eagan, J., Stasko, J.: Low-level components of analytic activity in information visualization. In: Proceedings of the 2005 IEEE Symposium on Information Visualization, INFOVIS 2005, p. 15. IEEE Computer Society, Washington, DC (2005)

    Google Scholar 

  4. Andrienko, G., Andrienko, N., Bak, P., Keim, D., Kisilevich, S., Wrobel, S.: A conceptual framework and taxonomy of techniques for analyzing movement. J. Vis. Lang. Comput. 22(3), 213–232 (2011)

    Article  Google Scholar 

  5. Andrienko, N.V., Andrienko, G.L., Gatalsky, P.: Visualization of spatio-temporal information in the internet. In: 11th International Workshop on Database and Expert Systems Applications (DEXA 2000), 6–8 September 2000, Greenwich, London, UK, pp. 577–585 (2000)

    Google Scholar 

  6. Borg, I., Groenen, P.J.F.: Modern Multidimensional Scaling Theory and Applications. Springer Series in Statistics, 2nd edn. Springer, New York (2010)

    MATH  Google Scholar 

  7. Brehmer, M., Munzner, T.: A multi-level typology of abstract visualization tasks. IEEE Trans. Visual. Comput. Graphics (TVCG) 19(12), 2376–2385 (2013). (Proc.InfoVis)

    Article  Google Scholar 

  8. Collins, C., Penn, G., Carpendale, S.: Bubble sets: revealing set relations with isocontours over existing visualizations. IEEE Trans. Visual Comput. Graphics 15(6), 1009–1016 (2009)

    Article  Google Scholar 

  9. Cuadros, A. M., Paulovich, F. V., Minghim, R., Telles, G. P.: Point placement by phylogenetic trees and its application to visual analysis of document collections. In: Proceedings of the 2007 IEEE Symposium on Visual Analytics Science and Technology, pp. 99–106. IEEE Computer Society (2007)

    Google Scholar 

  10. Duncan, J., Humphreys, G.: Visual search and stimulus similarity. Psychol. Rev. 96, 433–458 (1989)

    Article  Google Scholar 

  11. Eades, P., Huang, W., Hong, S.: A force-directed method for large crossing angle graph drawing. CoRR, abs/1012.4559 (2010)

    Google Scholar 

  12. Eades, P.A.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160 (1984)

    MathSciNet  Google Scholar 

  13. Ess, A., Leibe, B., Schindler, K., van Gool, L.: A mobile vision system for robust multi-person tracking, pp. 1–8, Anchorage, AK, USA (2008)

    Google Scholar 

  14. Etemadpour, R., da Motta, R.C., de Souza P., Gustavo, J., Minghim, R., Ferreira, M.C., Linsen, L.: Role of human perception in cluster-based visual analysis of multidimensional data projections. In: 5th International Conference on Information Visualization Theory and Applications (IVAPP), pp. 107–113, Lisbon, Portugal (2014a)

    Google Scholar 

  15. Etemadpour, R., Motta, R., de Souza Paiva, J.G., Minghim, R., de Oliveira, M.C.F., Linsen, L.: Perception-based evaluation of projection methods for multidimensional data visualization. IEEE Trans. Visual. Comput. Graphics 21(1), 81–94 (2014b)

    Article  Google Scholar 

  16. Etemadpour, R., Murray, P., Forbes, A.G.: Evaluating density-based motion for big data visual analytics. In: IEEE International Conference on Big Data, pp. 451–460, Washington, DC (2014c)

    Google Scholar 

  17. Etemadpour, R., Olk, B., Linsen, L.: Eye-tracking investigation during visual analysis of projected multidimensional data with 2D scatterplots. In: 5th International Conference on Information Visualization Theory and Applications (IVAPP), pp. 233–246, Lisbon, Portugal (2014d)

    Google Scholar 

  18. Geng, X., Zhan, D.-C., Zhou, Z.-H.: Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Trans. Syst. Man Cybern. Part B 35(6), 1098–1107 (2005)

    Article  Google Scholar 

  19. Henry, N., Fekete, J.: Matrixexplorer: a dual-representation system to explore social networks. IEEE Trans. Visual. Comput. Graphics 12, 677–684 (2006)

    Article  Google Scholar 

  20. Ingram, S., Munzner, T., Irvine, V., Tory, M., Bergner, S., Mller, T.: Workflows for dimensional analysis and reduction. In: IEEE VAST, pp. 3–10. IEEE (2010)

    Google Scholar 

  21. Ingram, S., Munzner, T., Olano, M.: Glimmer: multilevel MDS on the GPU. IEEE Trans. Visual. Comput. Graphics 15(2), 249–261 (2009)

    Article  Google Scholar 

  22. Jolliffe, I.T.: Pincipal Component Analysis. Springer-Verlag, New York (1986)

    Book  Google Scholar 

  23. Koffka, K.: Principles of Gestalt Psychology. Lund Humphries, London (1935)

    Google Scholar 

  24. Lewis, J.M., Ackerman, M.: A comparative study. In: 34th Annual Conference of the Cognitive Science Society, pp. 1870–1875 (2012)

    Google Scholar 

  25. Müller, E., Günnemann, S., Assent, I., Seidl, T.: Evaluating clustering in subspace projections of high dimensional data. PVLDB 2(1), 1270–1281 (2009)

    Google Scholar 

  26. Murray, P., Forbes, A.G.: Interactive visualization of multi-dimensional trajectory data. In: Proceedings of IEEE Visual Analytics Science and Technology (VAST), pp. 261–262, Paris, France (2014a)

    Google Scholar 

  27. Murray, P., Forbes, A.G.: Interactively exploring geotemporal relationships in demographic data via stretch projections. In: Proceedings of the ACM SIGSPATIAL International Workshop on Interacting with Maps (MapInteract), pp. 29–35, Dallas, Texas (2014b)

    Google Scholar 

  28. Paiva, J., Schwartz, W., Pedrini, H., Minghim, R.: An approach to supporting incremental visual data classification. IEEE Trans. Visual. Comput. Graphics 21(1), 4–17 (2015)

    Article  Google Scholar 

  29. Paiva, J.G.S., Florian, L., Pedrini, H., Telles, G.P., Minghim, R.: Improved similarity trees and their application to visual data classification. IEEE Trans. Visual. Comput. Graphics 17(12), 2459–2468 (2011)

    Article  Google Scholar 

  30. Paiva, J.G.S., Schwartz, W.R., Pedrini, H., Minghim, R.: Semi-supervised dimensionality reduction based on partial leastsquares for visual analysis of high dimensional data. Comput. Graph. Forum 31(3pt4), 1345–1354 (2012)

    Article  Google Scholar 

  31. Paulovich, F.V., Nonato, L.G., Minghim, R., Levkowitz, H.: Least square projection: a fast high-precision multidimensional projection technique and its application to document mapping. IEEE Trans. Visual. Comput. Graphics 14(3), 564–575 (2008)

    Article  Google Scholar 

  32. Peng, W., Ward, M.O., Rundensteiner, E.A.: Clutter reduction in multi-dimensional data visualization using dimension reordering. In: Ward, M.O., Munzner, T. (eds.) INFOVIS, pp. 89–96. IEEE Computer Society (2004)

    Google Scholar 

  33. Poco, J., Etemadpour, R., Paulovich, F.V., Long, T.V., Rosenthal, P., de Oliveira, M.C.F., Linsen, L., Minghim, R.: A framework for exploring multidimensional data with 3D projections. Comput. Graph. Forum 30(3), 1111–1120 (2011)

    Article  Google Scholar 

  34. Rensink, R.A., Baldridge, G.: The perception of correlation in scatterplots. Comput. Graph. Forum 29(3), 1203–1210 (2010)

    Article  Google Scholar 

  35. Rosenholtz, R., Twarog, N.R., Schinkel-Bielefeld, N., Wattenberg, M.: An intuitive model of perceptual grouping for HCI design. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2009, pp. 1331–1340. ACM, New York (2009)

    Google Scholar 

  36. Samet, H.: Foundations of Multidimensional and Metric Data Structures (The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling). Morgan Kaufmann Publishers Inc., San Francisco (2005)

    Google Scholar 

  37. Schreck, T., von Landesberger, T., Bremm, S.: Techniques for precision-based visual analysis of projected data. In: Park, J., Hao, M.C., Wong, P.C., Chen, C. (eds.) VDA. SPIE Proceedings, vol. 7530, p. 75300. SPIE (2010)

    Google Scholar 

  38. Schwartz, W.R., Davis, L.S.: Learning discriminative appearance-based models using partial least squares. Rio de Janeiro, Brazil (2009)

    Google Scholar 

  39. Sears, A.: Aide: a step toward metric-based interface development tools. In: Proceedings of the 8th Annual ACM Symposium on User Interface and Software Technology, UIST 1995, pp. 101–110. ACM, New York (1995)

    Google Scholar 

  40. Sedlmair, M., Brehmer, M., Ingram, S., Munzner, T.: Gaps and guidance - UBC computer science technical report tr-2012-03. Technical report, The University of British Columbia (2012a)

    Google Scholar 

  41. Sedlmair, M., Tatu, A., Munzner, T., Tory, M.: A taxonomy of visual cluster separation factors. Comp. Graph. Forum 31(3pt4), 1335–1344 (2012b)

    Article  Google Scholar 

  42. Sips, M., Neubert, B., Lewis, J.P., Hanrahan, P.: Selecting good views of high-dimensional data using class consistency. Comput. Graph. Forum 28(3), 831–838 (2009). (Proc. EuroVis 2009)

    Article  Google Scholar 

  43. Song, Y., Zhou, D., Huang, J., Councill, I.G., Zha, H., Giles, C.L.: Text categorization for unstructured data on the web. In: the Sixth IEEE international Conference on Data Mining, (ICDM 2006). IEEE (2006)

    Google Scholar 

  44. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley Longman, Boston (2005)

    Google Scholar 

  45. Tatu, A., Bak, P., Bertini, E., Keim, D.A., Schneidewind, J.: Visual quality metrics and human perception: an initial study on 2D projections of large multidimensional data. In: Proceedings of the Working Conference on Advanced Visual Interfaces (AVI 2010), pp. 49–56 (2010)

    Google Scholar 

  46. Tatu, A., Theisel, H., Magnor, M., Eisemann, M., Keim, D., Schneidewind, J., et al.: Combining automated analysis and visualization techniques for effective exploration of high-dimensional data (2009)

    Google Scholar 

  47. Tenembaum, J.B., de Silva, V., Langford, J.C.: A global geometric faramework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  48. Treisman, A.: Perceptual grouping and attention in visual search for features and for objects. Exper. Psychol. Hum. Percept. Perform. 8(2), 194–214 (1982)

    Article  Google Scholar 

  49. Tullis, T.S.: A system for evaluating screen formats: research and application. In: Hartson, H.R., Deborah, H. (eds.) Advances in Human-Computer Interaction, vol. 2, pp. 214–286 (1988)

    Google Scholar 

  50. Van Long, T., Linsen, L.: Visualizing high density clusters in multidimensional data using optimized star coordinates. Comput. Stat. 26(4), 655–678 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Villegas, J., Etemadpour, R., Forbes, A.G.: Evaluating the perception of different matching strategies for time-coherent animations. In: Proceedings of SPIE-IS&T Electronic Imaging Human Vision and Electronic Imaging XX 939412 (HVEI), San Francisco, California, vol. 9394, pp. 1–13 (2015)

    Google Scholar 

  52. Wold, H.: Partial Least Squares. Wiley, New York (2004)

    Book  Google Scholar 

  53. Zhang, X., Pan, F., Wang, W.: Finding local linear correlations in high dimensional data. In: IEEE 30th International Conference on Data Engineering, pp. 130–139 (2014)

    Google Scholar 

  54. Zhang, Y., Passmore, P.J., Bayford, R.H.: Visualization of multidimensional and multimodal tomographic medical imaging data, a case study. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 367(1900), 3121–3148 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronak Etemadpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Etemadpour, R., Linsen, L., Paiva, J.G., Crick, C., Forbes, A.G. (2016). Choosing Visualization Techniques for Multidimensional Data Projection Tasks: A Guideline with Examples. In: Braz, J., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2015. Communications in Computer and Information Science, vol 598. Springer, Cham. https://doi.org/10.1007/978-3-319-29971-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29971-6_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29970-9

  • Online ISBN: 978-3-319-29971-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics