Skip to main content

Survey of Piecewise Convex Maximization and PCMP over Spherical Sets

  • Chapter
  • First Online:
Advances in Stochastic and Deterministic Global Optimization

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 107))

  • 1407 Accesses

Abstract

The main investigation in this chapter is concerned with a piecewise convex function which can be defined by the pointwise minimum of convex functions, \(F(x) =\min \{ f_{1}(x),\ldots,f_{m}(x)\}\). Such piecewise convex functions closely approximate nonconvex functions, that seems to us as a natural extension of the piecewise affine approximation from convex analysis. Maximizing F(⋅ ) over a convex domain have been investigated during the last decade by carrying tools based mostly on linearization and affine separation. In this chapter, we present a brief overview of optimality conditions, methods, and some attempts to solve this difficult nonconvex optimization problem. We also review how the line search paradigm leads to a radius search paradigm, in the sense that sphere separation which seems to us more appropriate than the affine separation. Some simple, but illustrative, examples showing the issues in searching for a global solution are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ehrgott, M.: Multicriteria Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 491. Springer, Berlin (2000)

    Google Scholar 

  2. Enkhbat, R.: Quasiconvex Programming. National University of Mongolia, Ulaanbaatar (2004)

    Google Scholar 

  3. Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gümüş, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization. Nonconvex Optimization and its Applications, vol. 33. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  4. Fortin, D., Tsevendorj, I.: Piecewise-convex maximization problems: algorithm and computational experiments. J. Global Optim. 24 (1), 61–77 (2002). doi:10.1023/A:1016221931922. http://dx.doi.org/10.1023/A:1016221931922

    Google Scholar 

  5. Fortin, D., Tseveendorj, I.: Piecewise convex maximization approach to multiknapsack. Optimization 58 (7), 883–895 (2009). doi:10.1080/02331930902945033. http://dx.doi.org/10.1080/02331930902945033

    Google Scholar 

  6. Fortin, D., Tseveendorj, I.: A trust branching path heuristic for permutation problems. Int. J. Pure Appl. Math. 56 (3), 329–343 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Fortin, D., Tseveendorj, I.: Piece adding technique for convex maximization problems. J. Global Optim. 48 (4), 583–593 (2010). doi:10.1007/s10898-009-9506-z. http://dx.doi.org/10.1007/s10898-009-9506-z

    Article  MathSciNet  MATH  Google Scholar 

  8. Fortin, D., Tseveendorj, I.: Piecewise convex maximization problems: piece adding technique. J. Optim. Theory Appl. 148 (3), 471–487 (2011). doi:10.1007/s10957-010-9763-5. http://dx.doi.org/10.1007/s10957-010-9763-5

    Article  MathSciNet  MATH  Google Scholar 

  9. Fortin, D., Tseveendorj, I.: Attractive force search algorithm for piecewise convex maximization problems. Optim. Lett. 6 (7), 1317–1333 (2012). doi:10.1007/s11590-011-0395-y. http://dx.doi.org/10.1007/s11590-011-0395-y

    Article  MathSciNet  MATH  Google Scholar 

  10. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 2nd edn. Springer, Berlin (1993). doi:10.1007/978-3-662-02947-3. http://dx.doi.org/10.1007/978-3-662-02947-3

    Google Scholar 

  11. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Nonconvex Optimization and its Applications, vol. 48, 2nd edn. Kluwer Academic Publishers, Dordrecht (2000). doi:10.1007/978-1-4615-0015-5. http://dx.doi.org/10.1007/978-1-4615-0015-5

    Google Scholar 

  12. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I. Basic Theory Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 330. Springer, Berlin (2006)

    Google Scholar 

  13. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. Springer Briefs in Optimization. Springer, New York (2014). doi:10.1007/978-1-4614-9093-7. http://dx.doi.org/10.1007/978-1-4614-9093-7

    Google Scholar 

  14. Penot, J.P.: Duality for anticonvex programs. J. Global Optim. 19 (2), 163–182 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sergeyev, Y.D., Kvasov, D.: Diagonal global optimization methods (in Russian). Fizmatlit, Moscow (2008)

    MATH  Google Scholar 

  16. Strekalovskiĭ, A.S.: On the problem of the global extremum. Dokl. Akad. Nauk SSSR 292 (5), 1062–1066 (1987)

    MathSciNet  MATH  Google Scholar 

  17. Strekalovskii, A.S.: Elements of Nonconvex Optimization (in Russian). NAUKA, Novosibirsk (2003)

    MATH  Google Scholar 

  18. Törn, A., Žilinskas, A.: Global Optimization. Lecture Notes in Computer Science, vol. 350. Springer, Berlin (1989). doi:10.1007/3-540-50871-6. http://dx.doi.org/10.1007/3-540-50871-6

    Google Scholar 

  19. Tseveendorj, I.: On the conditions for global optimality. J. Mong. Math. Soc. (2), 58–61 (1998)

    MathSciNet  Google Scholar 

  20. Tsevendorj, I.: Piecewise-convex maximization problems: global optimality conditions. J. Global Optim. 21 (1), 1–14 (2001). doi:10.1023/A:1017979506314. http://dx.doi.org/10.1023/A:1017979506314

    Article  MathSciNet  MATH  Google Scholar 

  21. Tseveendorj, I., Fortin, D.: Pareto optima and local optimality of piecewise convex maximization problems. In: Proceedings of the 15-th Baikal International Conference on Optimization Methods and Their Applications, “Mathematical Programming”, vol. 2, pp. 25–29. ISDCT SB of the Russian Academy of Sciences’ Publisher, Irkutsk (2011)

    Google Scholar 

  22. Tuy, H.: Convex Analysis and Global Optimization. Nonconvex Optimization and Its Applications, vol. 22. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  23. Zălinescu, C.: On the maximization of (not necessarily) convex functions on convex sets. J. Global Optim. 36 (3), 379–389 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhiglyavskiĭ, A.A., Zhilinskas, A.G.: Metody poiska globalnogo ekstremuma. “Nauka”, Moscow (1991). With an English summary

    Google Scholar 

  25. Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer Optimization and Its Applications, vol. 9. Springer, New York (2008)

    Google Scholar 

  26. Zhilinskas, A.: Globalnaya optimizatsiya. “Mokslas”, Vilnius (1986). Aksiomatika statisticheskikh modelei, algoritmy, primeneniya. [Axiomatics of statistical models, algorithms, and applications.] With Lithuanian and English summaries

    Google Scholar 

Download references

Acknowledgements

This research benefited from the support of the FMJH “Program Gaspard Monge for optimization and operations research”, and from the support from EDF. The authors acknowledge use of the IBM ILOG CPLEX under the academic initiative license. The authors would like to thank the anonymous referee for his/her useful comments on this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ider Tseveendorj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tseveendorj, I., Fortin, D. (2016). Survey of Piecewise Convex Maximization and PCMP over Spherical Sets. In: Pardalos, P., Zhigljavsky, A., Žilinskas, J. (eds) Advances in Stochastic and Deterministic Global Optimization. Springer Optimization and Its Applications, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-29975-4_3

Download citation

Publish with us

Policies and ethics