Abstract
In 1965 Hennie proved that one-tape deterministic Turing machines working in linear time are equivalent to finite automata, namely they characterize regular languages. This result has been improved in different directions, by obtaining optimal lower bounds for the time that one-tape deterministic and nondeterministic Turing machines need to recognize nonregular languages. On the other hand, in 1964 Kuroda showed that one-tape Turing machines that are not allowed to use any extra space, besides the part of the tape which initially contains the input, namely linear bounded automata, recognize exactly context-sensitive languages. In 1967 Hibbard proved that for each integer \(d\ge 2\), one-tape Turing machines that are allowed to rewrite each tape cell only in the first d visits are equivalent to pushdown automata. This gives a characterization of the class of context-free languages in terms of restricted Turing machines. We discuss these and other related models, by presenting an overview of some fundamental results related to them. Descriptional complexity aspects are also considered.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For technical reasons actually we count the scans from left to right and from right to left on each cell. Hence, each transition reversing the head direction is counted as a double visit.
References
Alberts, M.: Space complexity of alternating Turing machines. In: Budach, L. (ed.) FCT. LNCS, vol. 199, pp. 1–7. Springer, Heidelberg (1985)
Bertoni, A., Mereghetti, C., Pighizzini, G.: An optimal lower bound for nonregular languages. Inf. Process. Lett. 50(6), 289–292 (1994). Corrigendum. ibid. 52(6), 339
Chomsky, N., Schützenberger, M.: The algebraic theory of context-free languages. In: Braffort, P., Hirschberg, D. (eds.) Computer Programming and Formal Systems, Studies in Logic and the Foundations of Mathematics, vol. 35, pp. 118–161. Elsevier, Amsterdam (1963)
Gajser, D.: Verifying time complexity of Turing machines. Theor. Comput. Sci. 600, 86–97 (2015)
Geffert, V.: Bridging across the log(n) space frontier. Inf. Comput. 142(2), 127–158 (1998)
Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. J. ACM 9(3), 350–371 (1962)
Hartmanis, J.: Computational complexity of one-tape Turing machine computations. J. ACM 15(2), 325–339 (1968)
Hennie, F.C.: One-tape, off-line Turing machine computations. Inf. Control 8(6), 553–578 (1965)
Hibbard, T.N.: A generalization of context-free determinism. Inf. Control 11(1/2), 196–238 (1967)
Hopcroft, J.E., Ullman, J.D.: Some results on tape-bounded Turing machines. J. ACM 16(1), 168–177 (1969)
Jancar, P., Mráz, F., Plátek, M.: Forgetting automata and context-free languages. Acta Inf. 33(5), 409–420 (1996)
Kobayashi, K.: On the structure of one-tape nondeterministic Turing machine time hierarchy. Theor. Comput. Sci. 40, 175–193 (1985)
Kuroda, S.: Classes of languages and linear-bounded automata. Inf. Control 7(2), 207–223 (1964)
Kutrib, M., Pighizzini, G., Wendlandt, M.: Descriptional complexity of limited automata (submitted)
Kutrib, M., Wendlandt, M.: On simulation cost of unary limited automata. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 153–164. Springer, Heidelberg (2015)
Lewis II., P.M., Stearns, R.E., Hartmanis, J.: Memory bounds for recognition of context-free and context-sensitive languages. In: FOCS, pp. 191–202. IEEE (1965)
Mereghetti, C.: Testing the descriptional power of small Turing machines on nonregular language acceptance. Int. J. Found. Comput. Sci. 19(4), 827–843 (2008)
Michel, P.: An NP-complete language accepted in linear time by a one-tape Turing machine. Theor. Comput. Sci. 85(1), 205–212 (1991)
Michel, P.: A survey of space complexity. Theor. Comput. Sci. 101(1), 99–132 (1992)
Mill, J.R.: Linear bounded automata. WADD Tech. Note, pp. 60–165, Wright Patterson Air Force Base, Ohio (1960)
Peckel, J.: On a deterministic subclass of context-free languages. In: Gruska, J. (ed.) Mathematical Foundations of Computer Science 1977. LNCS, vol. 53, pp. 430–434. Springer, Heidelberg (1977)
Pighizzini, G.: Nondeterministic one-tape off-line Turing machines. J. Automata, Lang. Combinatorics 14(1), 107–124 (2009). arxiv:0905.1271
Pighizzini, G.: Guest column: one-tape Turing machine variants and language recognition. SIGACT News 46(3), 37–55 (2015). arxiv:1507.08582
Pighizzini, G.: Strongly limited automata. Fundam. Inform. (to appear). A preliminaryversion appeared In: Bensch, S., Freund, R., Otto, F. (eds.) Proceedings of the Sixth Workshop on Non-Classical Models for Automata and Applications - NCMA 2014, 28–29 July 2014, Kassel, Germany, vol. 304, pp. 191–206. Österreichische Computer Gesellschaft (2014). books@ocg.at
Pighizzini, G., Pisoni, A.: Limited automata and regular languages. Int. J. Found. Comput. Sci. 25(7), 897–916 (2014)
Pighizzini, G., Pisoni, A.: Limited automata and context-free languages. Fundam. Inform. 136(1–2), 157–176 (2015)
Průša, D.: Weight-Reducing hennie machines and their descriptional complexity. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 553–564. Springer, Heidelberg (2014)
Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3(2), 114–125 (1959)
Stearns, R.E., Hartmanis, J., Lewis II., P.M.: Hierarchies of memory limited computations. In: FOCS, pp. 179–190. IEEE (1965)
Szepietowski, A.: Turing Machines with Sublogarithmic Space. LNCS, vol. 843. Springer, Heidelberg (1994)
Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of one-tape linear-time Turing machines. Theor. Comput. Sci. 411(1), 22–43 (2010)
Trakhtenbrot, B.A.: Turing machine computations with logarithmic delay (in russian). Algebra I Logica 3, 33–48 (1964)
Wagner, K.W., Wechsung, G.: Computational Complexity. D. Reidel Publishing Company, Dordrecht (1986)
Wechsung, G.: Characterization of some classes of context-free languages in terms of complexity classes. In: Becvár, J. (ed.) Mathematical Foundations of Computer Science 1975. LNCS, vol. 32, pp. 457–461. Springer, Heidelberg (1975)
Wechsung, G., Brandstädt, A.: A relation between space, return and dual return complexities. Theor. Comput. Sci. 9, 127–140 (1979)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Pighizzini, G. (2016). Restricted Turing Machines and Language Recognition. In: Dediu, AH., Janoušek, J., Martín-Vide, C., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2016. Lecture Notes in Computer Science(), vol 9618. Springer, Cham. https://doi.org/10.1007/978-3-319-30000-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-30000-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-29999-0
Online ISBN: 978-3-319-30000-9
eBook Packages: Computer ScienceComputer Science (R0)