Abstract
Formal verification of PCTL properties of MDPs with convex uncertainties has been recently investigated by Puggelli et al. However, model checking algorithms typically suffer from state space explosion. In this paper, we address probabilistic bisimulation to reduce the size of such an MDP while preserving PCTL properties it satisfies. We give a compositional reasoning over interval models to understand better the ways how large models with interval uncertainties can be composed. Afterwards, we discuss computational complexity of the bisimulation minimization and show that the problem is coNP-complete. Finally, we show that, under a mild condition, bisimulation can be computed in polynomial time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Here, \(\mathcal {B}\) is the standard \(\sigma \)-algebra over \( Paths _{ inf }\) generated from the set of all cylinder sets \(\{ Paths _{\omega } \mid \omega \in Paths _{ fin }\}\). The unique probability measure is obtained by the application of the extension theorem (see, e.g. [3]).
References
Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl. Math. 89(1), 3–44 (1998)
Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval Markov chains. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 32–46. Springer, Heidelberg (2013)
Billingsley, P.: Probability and Measure. John Wiley and Sons, New York (1979)
Cattani, S., Segala, R.: Decision algorithms for probabilistic bisimulation. In: Brim, L., Jančar, P., Křetínský, M., Kučera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 371–385. Springer, Heidelberg (2002)
Cattani, S., Segala, R., Kwiatkowska, M., Norman, G.: Stochastic transition systems for continuous state spaces and non-determinism. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 125–139. Springer, Heidelberg (2005)
Chatterjee, K., Sen, K., Henzinger, T.A.: Model-checking \(\omega \)-regular properties of interval Markov chains. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 302–317. Springer, Heidelberg (2008)
Chehaibar, G., Garavel, H., Mounier, L., Tawbi, N., Zulian, F.: Specification and verification of the PowerScale\({}^{\textregistered }\) busarbitration protocol: an industrial experiment with LOTOS. In: FORTE, pp. 435–450 (1996)
Chen, T., Han, T., Kwiatkowska, M.: On the complexity of model checking interval-valued discrete time Markov chains. Inf. Process. Lett. 113(7), 210–216 (2013)
Coste, N., Hermanns, H., Lantreibecq, E., Serwe, W.: Towards performance prediction of compositional models in industrial GALS designs. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 204–218. Springer, Heidelberg (2009)
Delahaye, B., Katoen, J.-P., Larsen, K.G., Legay, A., Pedersen, M.L., Sher, F., Wąsowski, A.: Abstract probabilistic automata. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 324–339. Springer, Heidelberg (2011)
Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wąsowski, A.: Decision problems for interval Markov chains. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 274–285. Springer, Heidelberg (2011)
Eirinakis, P., Ruggieri, S., Subramani, K., Wojciechowski, P.: On quantified linear implications. AMAI 71(4), 301–325 (2014)
Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)
Hahn, E.M., Han, T., Zhang, L.: Synthesis for PCTL in parametric Markov decision processes. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 146–161. Springer, Heidelberg (2011)
Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects Comput. 6(5), 512–535 (1994)
Hashemi, V., Hatefi, H., Krčál, J.: Probabilistic bisimulations for PCTL model checking of interval MDPs. SynCoP EPTCS 145, 19–33 (2014)
Hashemi, V., Hermanns, H., Turrini, A.: On the efficiency of deciding probabilistic automata weak bisimulation. ECEASST, 66 (2013)
Hermanns, H., Katoen, J.-P.: Automated compositional Markov chain generation for a plain-old telephone system. Sci. Comp. Progr. 36(1), 97–127 (2000)
Iancu, D.A., Sharma, M., Sviridenko, M.: Supermodularity and affine policies in dynamic robust optimization. Oper. Res. 61(4), 941–956 (2013)
Iyengar, G.N.: Robust dynamic programming. Math. Oper. Res. 30(2), 257–280 (2005)
Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: LICS, pp. 266–277 (1991)
Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three problems of equivalence. Inf. Comput. 86(1), 43–68 (1990)
Katoen, J.-P., Kemna, T., Zapreev, I., Jansen, D.N.: Bisimulation minimisation mostly speeds up probabilistic model checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 87–101. Springer, Heidelberg (2007)
Katoen, J.-P., Klink, D., Neuhäußer, M.R.: Compositional abstraction for stochastic systems. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 195–211. Springer, Heidelberg (2009)
Kozine, I., Utkin, L.V.: Interval-valued finite Markov chains. Reliable Comput. 8(2), 97–113 (2002)
Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View, 1st edn. Springer, Heidelberg (2008)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)
Nilim, A., Ghaoui, L.E.: Robust control of Markov decision processes with uncertain transition matrices. Oper. Res. 53(5), 780–798 (2005)
Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)
Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time verification of PCTL properties of MDPs with convex uncertainties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 527–542. Springer, Heidelberg (2013)
Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons, Amsterdam (1998)
Segala, R.: Modeling and verification of randomized distributed real-time systems. Ph.D. thesis, MIT (1995)
Sen, K., Viswanathan, M., Agha, G.: Model-checking Markov chains in the presence of uncertainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 394–410. Springer, Heidelberg (2006)
Subramani, K.: On the complexities of selected satisfiability and equivalence queries over boolean formulas and inclusion queries over hulls. JAMDS, 2009 (2009)
Turrini, A., Hermanns, H.: Polynomial time decision algorithms for probabilistic automata. Inf. Comput. 244, 134–171 (2015)
Vaidya, P.M.: An algorithm for linear programming which requires \({O}(((m+n)n^2) + (m+n)^{1.5})n){L})\) arithmetic operations. Math. Program. 47, 175–201 (1990)
Wolff, E.M., Topcu, U., Murray, R.M.: Robust control of uncertain Markov decision processes with temporal logic specifications. In: CDC, pp. 3372–3379 (2012)
Wu, D., Koutsoukos, X.D.: Reachability analysis of uncertain systems using bounded-parameter Markov decision processes. AI 172(8–9), 945–954 (2008)
Yi, W.: Algebraic reasoning for real-time probabilistic processes with uncertain information. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 680–693. Springer, Heidelberg (1994)
Acknowledgments
This work is supported by the EU 7th Framework Programme under grant agreements 295261 (MEALS) and 318490 (SENSATION), by the DFG as part of SFB/TR 14 AVACS, by the CAS/SAFEA International Partnership Program for Creative Research Teams, by the National Natural Science Foundation of China (Grants 61472473 and 61550110249), by the Chinese Academy of Sciences Fellowship for International Young Scientists (Grant 2015VTC029), and by the CDZ project CAP (GZ 1023). This research is supported in part by the National Science Foundation through Award CCF-1305054.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Hashemi, V., Hermanns, H., Song, L., Subramani, K., Turrini, A., Wojciechowski, P. (2016). Compositional Bisimulation Minimization for Interval Markov Decision Processes. In: Dediu, AH., Janoušek, J., Martín-Vide, C., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2016. Lecture Notes in Computer Science(), vol 9618. Springer, Cham. https://doi.org/10.1007/978-3-319-30000-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-30000-9_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-29999-0
Online ISBN: 978-3-319-30000-9
eBook Packages: Computer ScienceComputer Science (R0)