
ar
X

iv
:1

50
7.

05
50

0v
3

 [
cs

.L
O

]
 5

 J
ul

 2
01

8

The Complexity of Non-Iterated Probabilistic

Justification Logic

Ioannis Kokkinis

Institute of Computer Science, University of Bern, Switzerland

July 6, 2018

Abstract

The logic PJ is a probabilistic logic defined by adding (non-iterated)
probability operators to the basic justification logic J. In this paper we
establish upper and lower bounds for the complexity of the derivability
problem in the logic PJ. The main result of the paper is that the complex-
ity of the derivability problem in PJ remains the same as the complexity of
the derivability problem in the underlying logic J, which is Πp

2
-complete.

This implies hat the probability operators do not increase the complex-
ity of the logic, although they arguably enrich the expressiveness of the
language.

Keywords: justification logic, probabilistic logic, complexity, derivability,
satisfiability

1 Introduction

Traditional modal epistemic logic uses formulas of the form �α to express that
an agent believes α. The language of justification logic [5] ‘unfolds’ the �-
modality into a family of so-called justification terms, which are used to rep-
resent evidence for the agent’s belief. Hence, instead of �α, justification logic
includes formulas of the form t : α meaning

the agent believes α for reason t.

Artemov [2, 3] developed the first justification logic, the Logic of Proofs, to
provide intuitionistic logic with a classical provability semantics. There, jus-
tification terms represent formal proofs in Peano Arithmetic. However, terms
may also represent informal justifications. For instance, our belief in α may be
justified by direct observation of α or by learning that a friend heard about α.
This general reading of justification led to a big variety of epistemic justifica-
tion logics for many different applications [6, 7, 19]. In [15, 16] we extended
justification logic with probability operators in order to accommodate the idea
that

1

http://arxiv.org/abs/1507.05500v3

different kinds of evidence for α lead to different degrees of belief in α.

For example it could be the case that the agent learns α from some unreliable
source (e.g. from some friend of his) or that the agent reads about α in some
reliable newspaper. In both cases the agent has a justification for α: in the
first case he has the statement of his friend and in the second case the text of
the newspaper. However, it is natural that the agent does not want to put the
same credence in both sources of information. This differentiation in credulity
cannot be expressed in classical justification logic. So, the main contribution
of justification logics with probability operators (probabilistic justification log-
ics [15, 16]) is the ability to compare different sources of information. Uncertain
reasoning in justification logic has also been studied in [21, 12, 11]. See [15, 16]
for an extended comparison between our approach and the ones from [21, 12, 11].

Probabilistic logics are logics than can be used to model uncertain reason-
ing. Although the idea of probabilistic logic was first proposed by Leibnitz,
the modern development of this topic started only in the 1970s and 1980s in
the papers of H. Jerome Keisler [13] and Nils Nilsson [22]. Following Nilsson’s
research, Fagin, Halpern and Meggido [10] introduced a logic with arithmetical
operations built into the syntax so that Boolean combinations of linear inequal-
ities of probabilities of formulas can be expressed. The probabilistic logic of
[10] can be considered as a probabilistic logic with classical base. The derivabil-
ity problem in this logic is proved to be coNP -complete, the same as that of
classical propositional logic. Following the lines of [10], Ognjanović, Rašković
and Marković [23] defined the logic LPP2, which is also a probabilistic logic
with classical base. The logic LPP2 makes use of an infinitary rule which makes
the proof of strong completeness possible (as opposed to the finitary system of
[10] which is only simply complete). The LPP2-derivability problem is again
coNP -complete.

Following the lines of [23] the logic PJ was defined in [15]. PJ is a probabilistic
logic defined over the basic justification logic J.1 The language of PJ contains
formulas of the form P≥sα meaning

the probability of truthfulness of the justification formula α is at least s.

So, in the logic PJ, statements like “evidence t serves as a justification for α
with probability at least 30%” can be expressed. PJ does not allow iterations
of the probability operator. In [16] we study an extension of PJ, the logic PPJ,2

where iterations of the probability operator as well as justification operators
over probability operators are allowed.

The results of [17, 20, 8, 1] showed that, under some reasonable assumptions,
the derivability problem for the justification logic J is Πp

2-complete, i.e. it is
complete in the second level of the polynomial hierarchy. In this paper we show
that under the same assumptions the derivability problem for the probabilistic
justification logic PJ remains in the class Πp

2-complete. We achieve this, by
showing that the satisfiability problem for the logic PJ, which is dual to the

1J stands for justification, whereas PJ stands for probabilistic justification.
2the two P’s stand for iterations of the probability operator.

2

derivability problem, belongs to the class Σp
2-complete. The methods we use are

adaptations from [10] and [17]. As it is the case in [23] and [10] we also make
use of some well known results from the theory of linear programming. The
main result of the paper is that the probability operators do not increase the
complexity of the logic, although they arguably enrich the expressiveness of the
logical framework.

The rest of the paper is organized as follows. In section 2 we briefly recall the
justification logic J and the probabilistic justification logic PJ. In section 3 we
establish a small model theorem for PJ. In section 4 we present an algorithm that
decides the satisfiability problem for the logic PJ and evaluate its complexity.
We close the paper in section 5 with some final observations.

An earlier version of the present paper is available in arXiv [14].

2 The logics J and PJ

In this section we briefly recall the basic justification logic J [5] and the proba-
bilistic justification logic PJ [15].

Justification terms are built according to the following grammar:

t ::= c | x | (t · t) | (t + t) | !t

where c is a constant and x is a variable. Tm denotes the set of all terms. For
any term t and any non-negative integer n we define:

!0t := t and !n+1t := ! (!nt)

Terms are used to provide justifications for formulas. Constants are used as
justifications for axioms, whereas variables are used as justifications for arbitrary
formulas. The operator · can be used by the agents to apply modus ponens
(see axiom (J) in Figure 1), the operator + is used for concatenation of proofs
(see axiom (+) in Figure 1) and the operator ! is used for stating positive
introspection (see rule (AN!) in Figure 2). That is, if the agent has a justification
c for α then he has a justification !c for the fact that c is a justification for α
and so on.

Let Prop denote a countable set of atomic propositions. Formulas of the lan-
guage LJ (justification formulas) are built according to the following grammar:

α ::= p | ¬α | α ∧ α | t : α

where t ∈ Tm and p ∈ Prop. Any formula of the form t : α for t ∈ Tm and α ∈ LJ

will be called a justification assertion. We will use the letter p possibly primed
or with subscripts to represent an element of Prop and lower-case Greek letters
like α, β, γ, . . . for LJ-formulas. In Figure 1 we present the axioms schemes of
the logic J.

In order to build justifications for arbitrary formulas in the logic J we need
to start by some justifications for the axioms. That is why we need the notion

3

(P) finitely many axiom schemes for classical

propositional logic in the language of LJ

(J) ⊢ u : (α → β) → (v : α → u · v : β)

(+) ⊢
(

u : α ∨ v : α
)

→ u + v : α

Figure 1: Axioms Schemes of J

of a constant specification. A constant specification is any set CS that satisfies
the following condition:

CS ⊆ {(c, α) | c is a constant and α is an instance

of some axiom scheme of the logic J}

A constant specification CS will be called:

axiomatically appropriate: if for every instance of a J-axiom, α, there exists
some constant c such that (c, α) ∈ CS, i.e. every instance of a J-axiom
scheme is justified by at least one constant.

schematic: if for every constant c the set

{

α
∣

∣ (c, α) ∈ CS
}

consists of all instances of several (possibly zero) axiom schemes, i.e. if
every constant specifies certain axiom schemes and only them.

decidable: if the set CS is decidable. In this paper when we refer to a decidable
CS, we will always imply that CS is decidable in polynomial time.

finite: if CS is a finite set.

almost schematic: if CS = CS1 ∪CS2 where CS1 ∩CS2 = ∅, CS1 is a schematic
constant specification and CS2 is a finite constant specification.

total: if for every constant c and every instance α of a J-axiom scheme, (c, α) ∈
CS.

Let CS be any constant specification. The deductive system JCS is presented
in Figure 2.

axioms schemes of J

+

(AN!) ⊢ !n+1c : !nc : · · · : !c : c : α, where (c, α) ∈ CS and n ∈ N

(MP) if T ⊢ α and T ⊢ α → β then T ⊢ β

Figure 2: System JCS

4

As usual T ⊢L α means that the formula α is provable from the set of
formulas T using the rules and axioms of the logic L. When L is clear from the
context it will be omitted.

Now we present the semantics for the logic J. The models for a JCS are the
so called JCS-evaluations (see Definition 1). We use T to represent the truth
value “true” and F to represent the truth value “false”. Let P(W) denote the
powerset of the set W .

Definition 1 (JCS-Evaluation). Let CS be any constant specification. A JCS-
evaluation is a function ∗ such that ∗ : Prop → {T, F} and ∗ : Tm → P(LJ) and
for u, v ∈ Tm, for a constant c and α, β ∈ LJ we have:

(1)
(

α → β ∈ u∗ and α ∈ v∗
)

=⇒ β ∈ (u · v)∗

(2) u∗ ∪ v∗ ⊆ (u + v)∗

(3) if (c, α) ∈ CS then for all n ∈ N we have3:

!n−1c : !n−2c : · · · :!c : c : α ∈ (!nc)∗

We will usually write t∗ and p∗ instead of ∗(t) and ∗(p) respectively.

Now we will define the binary relation
.

Definition 2 (Truth under a JCS-Evaluation). We define what it means for an
LJ-formula to hold under a JCS-evaluation ∗ inductively as follows:

∗
 p ⇐⇒ p∗ = T

∗
 ¬α ⇐⇒ ∗ 6
 α

∗
 α ∧ β ⇐⇒
(

∗
 α and ∗
 β
)

∗
 t : α ⇐⇒ α ∈ t∗

We have the following theorem.

Theorem 3 (Completeness of J [4, 19]). Let CS be any constant specification.
Let α ∈ LJ. Then we have:

⊢JCS
α ⇐⇒
CS α.

where
CS α means that α holds under any JCS-evaluation.

Let S be the set of all rational numbers from the interval [0, 1]. The formulas
of the language LP (the so called probabilistic formulas) are built according to
the following grammar:

A ::= P≥sα | ¬A | A ∧ A

3We agree to the convention that the formula !n−1
c : !n−2

c : · · · : !c : c : α represents the
formula α for n = 0.

5

where s ∈ S, and α ∈ LJ. We use capital Latin letters like A, B, C, . . . for
LP-formulas. We employ the standard abbreviations for classical connectives.
Additionally, we set:

P<sα ≡ ¬P≥sα P≤sα ≡ P≥1−s¬α

P>sα ≡ ¬P≤sα P=sα ≡ P≥sα ∧ P≤sα

The axioms schemes of PJ are presented in Figure 3. For any constant spec-

(P) finitely many axiom schemes for classical

propositional logic in the language of LP

(PI) ⊢ P≥0α

(WE) ⊢ P≤rα → P<sα, where s > r

(LE) ⊢ P<sα → P≤sα

(DIS) ⊢ P≥rα ∧ P≥sβ ∧ P≥1¬(α ∧ β) → P≥min(1,r+s)(α ∨ β)

(UN) ⊢ P≤rα ∧ P<sβ → P<r+s(α ∨ β), where r + s ≤ 1

Figure 3: Axioms Schemes of PJ

ification CS the deductive system PJCS is presented in Figure 4. Definitions 4–6
describe the semantics for the logic PJ.

axiom schemes of PJ

+

(MP) if T ⊢ A and T ⊢ A → B then T ⊢ B

(CE) if ⊢JCS
α then ⊢PJCS

P≥1α

(ST) if T ⊢ A → P≥s− 1

k
α for every integer k ≥ 1

s
and s > 0

then T ⊢ A → P≥sα

Figure 4: System PJCS

Definition 4 (Algebra over a set). Let W be a non-empty set and let H be a
non-empty subset of P(W). H will be called an algebra over W iff the following
hold:

• W ∈ H

• U, V ∈ H =⇒ U ∪ V ∈ H

• U ∈ H =⇒ W \ U ∈ H

Definition 5 (Finitely Additive Measure). Let H be an algebra over W and
µ : H → [0, 1]. We call µ a finitely additive measure iff the following hold:

(1) µ(W) = 1

6

(2) for all U, V ∈ H :

U ∩ V = ∅ =⇒ µ(U ∪ V) = µ(U) + µ(V)

Definition 6 (PJCS-Model). Let CS be any constant specification. A PJCS-
model, or simply a model, is a structure M = 〈W, H, µ, ∗〉 where:

• W is a non-empty set of objects called worlds.

• H is an algebra over W .

• µ : H → [0, 1] is a finitely additive measure.

• ∗ is a function from W to the set of all JCS-evaluations, i.e. ∗(w) is a
JCS-evaluation for each world w ∈ W . We will usually write ∗w instead of
∗(w).

Definition 7 (Measurable model). Let M = 〈W, H, µ, ∗〉 be a model and α ∈
LJ. We define the following set:

[α]M = {w ∈ W | ∗w
 α}

We will omit the subscript M , i.e. we will simply write [α], if M is clear from the
context. A PJCS-model M = 〈W, H, µ, ∗〉 is measurable iff [α]M ∈ H for every
α ∈ LJ. The class of measurable PJCS-models will be denoted by PJCS,Meas.

Definition 8 (Truth in a PJCS,Meas-model). Let CS be any constant specifica-
tion. Let M = 〈W, H, µ, ∗〉 be a PJCS,Meas-model. We define what it means for
an LP-formula to hold in M inductively as follows4:

M |= P≥sα ⇐⇒ µ([α]M) ≥ s

M |= ¬A ⇐⇒ M 6|= A

M |= A ∧ B ⇐⇒
(

M |= A and M |= B
)

In the sequel we may refer to PJCS,Meas-models simply as models if there is
no danger for confusion. We have the following theorem.

Theorem 9 (Strong Completeness for PJ [15]). Any PJCS is sound and strongly
complete with respect to PJCS,Meas-models, i.e. for any T ⊆ LP and any A ∈ LP:

T ⊢PJCS
A ⇐⇒ T |=PJCS

A

Let CS be any constant specification. A formula A ∈ LP is satisfied in
M ∈ PJCS,Meas iff M |= A. A will be called PJCS,Meas-satisfiable or simply
satisfiable if there is a PJCS,Meas-model that satisfies A. We define the PJCS,Meas-
satisfiability problem to be the decision problem defined as follows:

“For a given A ∈ LP and a given CS is A PJCS,Meas-satisfiable?”

4Observe that the satisfiability relation of a JCS-evaluation is represented with
 whereas
the satisfiability relation of a model is represented with |=.

7

A formula α ∈ LJ is satisfied in a JCS-evaluation ∗ iff ∗
 α. α will be called
JCS-satisfiable or simply satisfiable if there is some JCS-evaluation ∗ that satisfies
α. We define the JCS-satisfiability problem to be the decision problem defined
as follows:

“For a given α ∈ LJ and a given CS is α JCS-satisfiable?”

3 Small Model Property

The goal of this section is to prove a small model property for the logic PJ. The
small model property will be the most important tool for establishing the upper
bound for the complexity of PJ.

Definition 10 (Subformulas). The set subf(·) is defined recursively as follows:
For LJ-formulas:

• subf(p) := {p}

• subf(t : α) := {t : α} ∪ subf(α)

• subf(¬α) := {¬α} ∪ subf(α)

• subf(α ∧ β) := {α ∧ β} ∪ subf(α) ∪ subf(β)
For LP-formulas:

• subf(P≥sα) := {P≥sα} ∪ subf(α)

• subf(¬A) := {¬A} ∪ subf(A)

• subf(A ∧ B) := {A ∧ B} ∪ subf(A) ∪ subf(B)
Observe that for A ∈ LP we have that subf(A) ⊆ LP ∪ LJ.

Definition 11 (Atoms). Let A be an LP- or an LJ-formula. Let X be the set
that contains all the atomic propositions and the justification assertions from
the set subf(A). An atom of A is any formula of the following form:

∧

B∈X

±B (1)

where ±B denotes either B or ¬B. We will use the lowercase Latin letter a for
atoms, possibly with subscripts.

Let A be an LP- or an LJ-formula. Assume that A is either of the form
∧

i Bi or of the form
∨

i Bi. Then C ∈ A means that for some i, Bi = C.

Definition 12 (Sizes). The size function | · | is defined as follows:
For LP-formulas: (recursively)

• |P≥sα| := 2

• |¬A| := 1 + |A|

• |A ∧ B| := |A| + 1 + |B|

8

For sets:

Let W be a set. |W | is the cardinal number of W .
For non-negative integers:

Let r be an non-negative integer. We define the size of r to be equal to the
length of r written in binary, i.e.:

|r| :=

{

1 , r = 0

⌊log2(r) + 1⌋ , r ≥ 1

where ⌊·⌋ is the function that returns the greatest integer that is less than or
equal to its argument.
For non-negative rational numbers:

Let r = s1

s2

, where s1 and s2 are relatively prime non-negative integers with
s2 6= 0, be a non-negative rational number. We define:

|r| := |s1| + |s2|

Let A ∈ LP we define:

||A|| := max
{

|s|
∣

∣ P≥sα ∈ subf(A)
}

Lemma 13 was originally proved in [23] for the logic LPP2. The proof for
the logic PJ is given in [15].

Lemma 13. For any constant specification CS, we have:

⊢JCS
α ↔ β ⇐⇒ ⊢PJCS

P≥sα ↔ P≥sβ

A proof for Theorem 14 can be found in [9, p. 145].

Theorem 14. Let S be a system of r linear equalities. Assume that the vector5

x is a solution of S such that all of x’s entries are non-negative. Then there is
a vector x

∗ such that:
(1) x

∗ is a solution of S.

(2) all the entries of x
∗ are non-negative.

(3) at most r entries of x
∗ are positive.

Theorem 15 establishes some properties for the solutions of a linear system.

Theorem 15. Let S be a linear system of n variables and of r linear equalities
and/or inequalities with integer coefficients each of size at most l. Assume that
the vector x = x1, . . . , xn is a solution of S such that for all i ∈ {1, . . . , n},
xi ≥ 0. Then there is a vector x

∗ = x∗
1, . . . , x∗

n with the following properties:

(1) x
∗ is a solution of S.

(2) for all i ∈ {1, . . . , n}, x∗
i ≥ 0.

5We will always use bold font for vectors.

9

(3) at most r entries of x
∗ are positive.

(4) for all i ∈ {1, . . . , n}, if x∗
i > 0 then xi > 0.

(5) for all i, x∗
i is a non-negative rational number with size bounded by

2 ·
(

r · l + r · log2(r) + 1
)

.

Proof. In S we replace the variables that correspond to the entries of x that are
equal to zero (if any) with zeros. This way we obtain a new linear system S0,
with r linear equalities and/or inequalities and m ≤ n variables. x is a solution6

of S0. It also holds that any solution of S0 is a solution7 of S.
Assume that the system S0 contains an inequality of the form

b1 · y1 + . . . + bmym ♦ c (2)

for ♦ ∈ {<, ≤, ≥, >} where y1, . . . , ym are variables of S and b1, . . . , bm, c are
constants that appear in S. x is a solution of (2). We replace the inequality
(2) in S0 with the following equality:

b1 · y1 + . . . + bmym = b1 · x1 + . . . + bl · xm

We repeat this procedure for every inequality of S0. This way we obtain a
system of linear equalities which we call S1. It is easy to see that x is a solution
of S1 and that any solution of S1 is also a solution of S0 and thus of S.

Now we will transform S1 to another linear system by applying the following
algorithm.
Algorithm:

We set i = 1, ei = r, vi = m, x
i = x and we execute the following steps:

(i) If ei = vi then go to step (ii). Otherwise go to step (iii).

(ii) If the determinant of Si is non-zero then stop. Otherwise go to step (v).

(iii) If ei < vi then go to step (iv), else go to step (v).

(iv) We know that the vector x
i is a non-negative solution for the system Si.

From Theorem 14 we obtain a solution x
i+1 for the system Si which has at

most ei entries positive. In Si we replace the variables that correspond to
zero entries of the solution x

i+1 with zeros. We obtain a new system which
we call Si+1 with ei+1 equalities and vi+1 variables. x

i+1 is a solution of
Si+1 and any solution of Si+1 is a solution of Si. We set i := i + 1 and we
go to step (i).

6In the proof of Theorem 15 all vectors have n entries. The entries of the vectors are
assumed to be in one to one correspondence with the variables that appear in the original
system S.

Let y be a solution of a linear system T . If y has more entries than the variables of T we
imply that entries of y that correspond to variables that appear in T compose a solution of
T .

7Assume that system T has less variables than system T ′. When we say that any solution
of T is a solution of T ′ we imply that the missing variables are set to 0.

10

(v) From any set of equalities that are linearly dependent we keep only one
equation. We obtain a new system which we call Si+1 with ei+1 equalities
and vi+1 := vi variables. We set i := i + 1 and x

i+1 := x
i. We go to step

(i).

Let I be the final value of i after the execution of the algorithm. Since the only
way for our algorithm to terminate is through step (ii) it holds that system SI

is an eI × eI system of linear equalities with non-zero determinant (for eI ≤
r). System SI is obtained from system S1 by replacing some variables that
correspond to zero entries of the solution with zeros. So any solution of SI is
also a solution of system S1 and thus a solution of S. From the algorithm we
have that x

I is a solution of SI . Since SI has a non-zero determinant Cramer’s
rule can be applied. Hence the vector x

I is the unique solution of system SI .
Let xI

i be an entry of x
I . xI

i will be equal to the following rational number
∣

∣

∣

∣

∣

∣

∣

a11 . . . a1eI

. . .

aeI 1 . . . aeI eI

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b11 . . . b1eI

. . .

beI 1 . . . beIeI

∣

∣

∣

∣

∣

∣

∣

where all the aij and bij are integers that appear in the original system S. By
properties of the determinant we know that the numerator and the denominator
of the above rational number will each be at most equal to r! · (2l − 1)r. So we
have that:

|xI
i | ≤ 2 ·

(

log2(r! · (2l − 1)r) + 1
)

=⇒

|xI
i | ≤ 2 ·

(

log2(rr · 2l·r) + 1
)

=⇒

|xI
i | ≤ 2 ·

(

r · log2(r) + l · r + 1
)

As we already mentioned the final vector x
I is a solution of the original linear

system S. We also have that all the entries of x
I are non-negative, at most

r of its entries are positive and the size of each entry of x
I is bounded by

2 · (r · log2 r + r · l + 1). Furthermore, since the variables that correspond to zero
entries of the original vector x were replaced by zeros, we have that for every i,
if the i-th entry of x

I is positive then the i-th entry of x is positive too. So x
I

is the requested vector x
∗.

The following theorem is an adaptation of the small model theorem from
[10]. Similar techniques have also been used in [23] to obtain decidability for
the logic LPP2.

Theorem 16 (Small Model Property). Let CS be any constant specification and
let A ∈ LP. If A is PJCS,Meas-satisfiable then it is satisfiable in a PJCS,Meas-model
M = 〈W, H, µ, ∗〉 such that:

11

(1) |W | ≤ |A|

(2) H = P(W)

(3) For every w ∈ W , µ({w}) is a rational number with size at most

2 ·
(

|A| · ||A|| + |A| · log2(|A|) + 1
)

(4) For every V ∈ H

µ(V) =
∑

w∈V

µ({w})

(5) For every atom of A, a, there exists at most one w ∈ W such that ∗w
 a.

Proof. Let CS be any constant specification and let A ∈ LP. Let a1, . . . , an be
all the atoms of A. By propositional reasoning (in the logic PJCS) we can prove
that:

PJCS ⊢ A ↔
K
∨

i=1

li
∧

j=1

P♦ijsij
(βij)

where all the P♦ijsij
(βij) appear in A and ♦ij ∈ {≥, <}.

By using propositional reasoning again (but this time in the logic JCS) we
can prove that each βij is equivalent to a disjunction of some atoms of A. So,
by using Lemma 13 we have that:

PJCS ⊢ A ↔
K
∨

i=1

li
∧

j=1

P♦ijsij
(αij)

where each αij is a disjunction of some atoms of A. By Theorem 9 we have that
for any M ∈ PJCS,Meas:

M |= A ⇐⇒ M |=
K
∨

i=1

li
∧

j=1

P♦ijsij
(αij) (3)

Assume that A is satisfiable. By (3) there must exist some i such that

li
∧

j=1

P♦ijsij
(αij)

is satisfiable. Let M ′ = 〈W ′, H ′, µ′, ∗′〉 be a model such that:

M ′ |=
li
∧

j=1

P♦ij sij
(αij) (4)

12

For every k ∈ {1, . . . , n} we define:

xk = µ′([ak]M ′) (5)

In every world of M ′ some atom of A must hold. Thus, we have:

W ′ =
n
⋃

k=1

[ak]M ′

And since µ′(W ′) = 1 we get:

µ′
(

n
⋃

k=1

[ak]M ′

)

= 1 (6)

The ak’s are atoms of the same formula, so we have:

k 6= k′ =⇒ [ak]M ′ ∩ [ak′]M ′ = ∅ (7)

By (6), (7) and the fact that µ′ is a finitely additive measure we get:

n
∑

k=1

µ′([ak]M ′) = 1

and by (5):
n
∑

k=1

xk = 1 (8)

Let j ∈ {1, . . . , li}. From (4) we get:

M ′ |= P♦ijsij

(

αij
)

.

This implies that µ′([αij]M ′) ♦ij sij , i.e.

µ′

([

∨

ak∈αij

ak

]

M ′

)

♦ij sij

which implies that

µ′

(

⋃

ak∈αij

[ak]M ′

)

♦ij sij

By (7) and the additivity of µ′ we have that:

∑

ak∈αij

µ′([ak]M ′) ♦ij sij

and by (5):
∑

ak∈αij

xk ♦ij sij .

13

So we have that

for every j ∈ {1, . . . , li},
∑

ak∈αij

xk ♦ij sij (9)

Let S be the following linear system:

n
∑

k=1

zk = 1

∑

ak∈αi1

zk ♦i1 si1

...
∑

ak∈αili

zk ♦ili
sili

where the variables of the system are z1, . . . , zn. We have the following:
(i) By (8) and (9) the vector x = x1, . . . , xn is a solution of S.

(ii) From (5) every xk is non-negative.

(iii) Every sij is a rational number with size at most ||A||.

(iv) System S has at most |A| equalities and inequalities.
From (i)-(iv) and Theorem 15 we have that there exists a vector y = y1, . . . , yn

such that:
(I) y is a solution of S.

(II) every yi is a non-negative rational number with size at most

2 ·
(

|A| · ||A|| + |A| · log2(|A|) + 1
)

.

(III) at most |A| entries of y are positive.

(IV) for all i, if yi > 0 then xi > 0.
Assume that y1, . . . , yN are the positive entries of y where

N ≤ |A| (10)

We define the quadruple M = 〈W, H, µ, ∗〉 as follows:
(a) W = {w1, . . . , wN }, for some w1, . . . , wN .

(b) H = P(W).

(c) for all V ∈ H :

µ(V) =
∑

wk∈V

yk .

14

(d) Let i ∈ {1, . . . , N}. We define ∗wi
to be some JCS-evaluation that sat-

isfies the atom ai. Since yi is positive, by (IV), xi is positive too, i.e.
µ′([ai]M ′) > 0, which means that [ai]M ′ 6= ∅, i.e. that the atom ai is
JCS-satisfiable.

It holds:

µ(W) =
∑

wk∈W

yk

=

n
∑

k=1

yk

(I)
= 1

Let U, V ∈ H such that U ∩ V = ∅. It hods:

µ(U ∪ V) =
∑

wk∈U∪V

yk

=
∑

wk∈U

yk +
∑

wk∈V

yk

= µ(U) + µ(V)

Thus µ is a finitely additive measure. By Definitions 6 and 7 we have that
M ∈ PJCS,Meas.

We will now prove the following statement:

(∀1 ≤ k ≤ n)
[

wk ∈ [αij]M ⇐⇒ ak ∈ αij
]

(11)

Let k ∈ {1, . . . , n}. We prove the two directions of (11) separately.
(=⇒:) Assume that wk ∈ [αij]. This means that ∗wk

 αij . Assume that
ak /∈ αij . Then, since αij is a disjunction of atoms of A, there must exist some
ak′ ∈ αij , with k 6= k′, such that ∗wk

 ak′ . However, by definition we have
that ∗wk

 ak. But this is a contradiction, since ak and ak′ are different atoms
of the same formula, which means that they cannot be satisfied by the same
JCS-evaluation. Hence, ak ∈ αij .

(⇐=:) Assume that ak ∈ αij . We know that ∗wk

 ak, which implies that

∗wk

 αij , i.e. wk ∈ [αij]M .

Hence, (11) holds. Now, we will prove the following statement:

(

∀1 ≤ j ≤ li
)[

M |= P♦ijsij
αij
]

(12)

15

Let j ∈ {1, . . . , li}. It holds

M |= P♦ijsij
(αij) ⇐⇒

µ([αij]M) ♦ij sij ⇐⇒
∑

wk∈[αij]M

yk ♦ij sij

(11)
⇐⇒

∑

ak∈αij

yk ♦ij sij

The last statement holds because of (I). Thus, (12) holds.

By (12) we have that M |=
∧li

j=1 P♦ijsij
(αij), which implies that

M |=
K
∨

i=1

li
∧

j=1

P♦ijsij
(αij),

which, by (3), implies that M |= A.
Let wk ∈ W . It holds:

µ({wk}) =
∑

wi∈{wk}

yi = yk (13)

Now we will show that conditions (1)–(5) in the theorem’s statement hold.

• Condition (1) holds because of (a) and (10).

• Condition (2) holds because of (b).

• Condition (3) holds because of (13) and (II).

• For every V ∈ H , because of (13), we have:

µ(V) =
∑

wk∈V

yk =
∑

wk∈V

µ({wk})

Hence condition (4) holds.

• By (d) every world of M satisfies a unique atom of α. Thus condition (5)
holds.

So M is the model in question.

4 Complexity

Lemmata 17 and 18 can be proved by straightforward induction on the com-
plexity of the formula. Lemma 17 tells us that if two JCS-evaluations agree on
some atom of a justification formula then they agree on the formula itself.

16

Lemma 17. Let CS be any constant specification. Let α ∈ LJ and let a be an
atom of α. Let ∗1, ∗2 be two JCS-evaluations and assume that

∗1
 a ⇐⇒ ∗2
 a .

Then we have:
∗1
 α ⇐⇒ ∗2
 α .

Lemma 18. Let α ∈ LJ and let a be an atom of α. Let ∗ be a JCS-evaluation
and assume that ∗
 a. The decision problem

does ∗ satisfy α?

belongs to the complexity class P .

Kuznets [17] presented an algorithm for the JCS-satisfiability problem for a
total constant specification CS. Kuznets’ algorithm is divided in two parts: the
saturation algorithm and the completion algorithm. Let α ∈ LJ be the formula
that is tested for satisfiability.

• The saturation algorithm produces a set of requirements that should be
satisfied by any JCS-evaluation that satisfies α. The saturation algorithm
operates in NP -time8.

• The completion algorithm determines whether a JCS-evaluation that sat-
isfies α exists or not. The completion algorithm operates in coNP -time.

If the saturation and the completion algorithm are taken together, then we
obtain a Σp

2-algorithm for the JCS-satisfiability problem (for a total CS). The
completion algorithm (adjusted to our notation) is stated in Theorem 19.

Theorem 19. Let CS be a total constant specification. Let a be an atom of
some LJ-formula. The decision problem

is a JCS-satisfiable?

belongs to the complexity class coNP .

Now we are ready to prove the upper bound for the complexity of the
PJCS,Meas-satisfiability problem.

Theorem 20. Let CS be a total constant specification. The PJCS,Meas-satisfiability
problem belongs to the complexity class Σp

2.

Proof. First we will describe an algorithm that decides the problem in question
and we will explain its correctness. Then we will evaluate the complexity of the
algorithm.

8A reader unfamiliar with notions of computational complexity theory may consult a text-
book on the field, like [24].

17

Algorithm:

Let A ∈ LP. It suffices to guess a small model M = 〈W, H, µ, ∗〉 that satisfies A
and also satisfies the conditions (1)–(5) that appear in the statement of Theo-
rem 16. We guess M as follows: we guess n atoms of A, call them a1, . . . , an,
and we also choose n worlds, w1, . . . , wn, for n ≤ |A|. Using Theorem 19 we
verify that for each i ∈ {1, . . . , n} there exists a JCS-evaluation ∗i such that
∗i
 ai. We define W = {w1, . . . , wn}. For every i ∈ {1, . . . , n} we set ∗wi

= ∗i.
Since we are only interested in the satisfiability of justification formulas that
appear in A, by Lemma 17, the choice of the ∗wi

is not important (as long as
∗wi

satisfies ai).
We assign to every µ({wi}) a rational number with size at most:

2 ·
(

|A| · ||A|| + |A| · log2(|A|) + 1
)

.

We set H = P(W). For every V ∈ H we set:

µ(V) =
∑

wi∈V

µ({wi}) .

It is then straightforward to see that the conditions (1)–(5) that appear in the
statement of Theorem 16 hold.

Now we have to verify that our guess is correct, i.e. that M |= A. Assume
that P≥sα appears in A. In order to see whether P≥sα holds we need to calculate
the measure of the set [α]M in the model M . The set [α]M will contain every
wi ∈ W such that ∗wi

 α. Since ∗wi
satisfies an atom of A it also satisfies an

atom of α. So, by Lemma 18, we can check whether ∗wi
satisfies α in polynomial

time. If
∑

wi∈[α]M
µ({wi}) ≥ s then we replace P≥sα in A with the truth value

T, otherwise with the truth value F. We repeat the above procedure for every
formula of the form P≥sα that appears in A. At the end we have a formula that
is constructed only from the connectives ¬, ∧ and the truth constants T and F.
Using a truth table we can verify in polynomial time that the formula is true.
This, of course implies that M |= A.
Complexity Evaluation:

All the objects that are guessed in our algorithm have size that is polynomial on
A. Also the verification phase of our algorithm can be made in polynomial time.
Furthermore the application of Theorem 19 is possible with an NP -oracle (an
NP -oracle can obviously decide coNP problems too). Thus our algorithm is an
NP NP algorithm and since Σp

2 = NP NP the claim of the Theorem follows.

5 Final Remarks and Conclusion

As a continuation of [15] and [16] we showed that results for justification logic
and probabilistic logic can be nicely combined. Recall that the probabilistic jus-
tification logic PJ is obtained by adding probability operators to the justification
logic J. In [17] it was proved that under some assumptions on the constant spec-
ification the complexity of the satisfiability problem for the logic J belongs to

18

the class Σp
2. By Theorem 20 we have that, under the same assumptions on the

constant specification, the complexity of the satisfiability problem for the logic
PJ remains in the same complexity class. Hence, the probabilistic operators do
not increase the complexity of the satisfiability problem, although they increase
the expressiveness of the language.

As it is pointed out in [18], Theorem 19 holds for a decidable almost schematic
constant specification. Theorem 20 uses Theorem 19 as an oracle. So, obviously
Theorem 20 holds for a decidable almost schematic constant specification too.

The upper complexity bound we established is tight. By a result from
[20] which was later strengthened in [8] and [1] we have that for a decid-
able, schematic and axiomatically appropriate constant specification CS the
JCS-satisfiability problem is Σp

2-hard. For any α ∈ LJ it is not difficult to prove
that:

α is JCS-satisfiable ⇐⇒ P≥1α is PJCS,Meas-satisfiable

Hence, the JCS-satisfiability problem can be reduced to the PJCS,Meas-satisfiability
problem, which implies that the PJCS,Meas-satisfiability problem is Σp

2-hard too.
Thus the JCS-satisfiabilty problem as well as the PJCS,Meas-satisfiability problem
are Σp

2-complete.
Observe that by Theorem 9 and our previous remarks we have that, for

a decidable schematic and axiomatically apropriate constant specification, the
derivability problem for the logic PJCS is Πp

2-complete.
In [16] the probabilistic justification logic PPJ is defined. PPJ is a natural

extension of PJ that supports iterations of the probability operator as well as
justifications over probabilities. An interesting open problem related to the
present work is to determine complexity bounds for PPJ.

Funding:

The author is supported by the SNSF project 153169, Structural Proof Theory
and the Logic of Proofs.

Acknowledgements:

The author is grateful to Antonis Achilleos, Thomas Studer and the anonymous
referees for valuable comments and remarks that helped him improve the quality
of the paper substantially.

References

[1] Achilleos, A.: Nexp-completeness and universal hardness results for justi-
fication logic (2015), cSR 2015: 27-52

[2] Artemov, S.N.: Operational modal logic. Tech. Rep. MSI 95–29, Cornell
University (Dec 1995)

[3] Artemov, S.N.: Explicit provability and constructive semantics. Bulletin of
Symbolic Logic 7(1), 1–36 (Mar 2001)

19

[4] Artemov, S.N.: The ontology of justifications in the logical setting. Studia
Logica 100(1–2), 17–30 (Apr 2012), published online February 2012

[5] Artemov, S.N., Fitting, M.: Justification logic. In: Zalta, E.N. (ed.) The
Stanford Encyclopedia of Philosophy. Fall 2012 edn. (2012),
http://plato.stanford.edu/archives/fall2012/entries/logic-justification/

[6] Bucheli, S., Kuznets, R., Studer, T.: Justifications for common knowledge.
Journal of Applied Non-Classical Logics 21(1), 35–60 (Jan–Mar 2011)

[7] Bucheli, S., Kuznets, R., Studer, T.: Partial realization in dynamic jus-
tification logic. In: Beklemishev, L.D., de Queiroz, R. (eds.) Logic, Lan-
guage, Information and Computation, 18th International Workshop, WoL-
LIC 2011, Philadelphia, PA, USA, May 18–20, 2011, Proceedings, Lecture
Notes in Artificial Intelligence, vol. 6642, pp. 35–51. Springer (2011)

[8] Buss, S.R., Kuznets, R.: Lower complexity bounds in justification logic.
Annals of Pure and Applied Logic 163(7), 888–905 (Jul 2012)

[9] Chvátal, V.: Linear programming. W. H. Freeman and Company, New
York (1983)

[10] Fagin, R., Halpern, J., Megiddo, N.: A logic for reasoning about probabil-
ities. Information and Computation 87, 78–128 (1990)

[11] Fan, T., Liau, C.: A logic for reasoning about justified uncertain beliefs. In:
Yang, Q., Wooldridge, M. (eds.) Proc. IJCAI 2015. pp. 2948–2954. AAAI
Press (2015)

[12] Ghari, M.: Justification logics in a fuzzy setting. ArXiv e-prints (Jul 2014)

[13] Keisler, J.: Hyperfinite model theory. In: Gandy, R.O., Hyland, J.M.E.
(eds.) Logic Colloquim 1976, p. 5–10. North-Holland (1977)

[14] Kokkinis, I.: On the complexity of probabilistic justification logic (2015),
arXiv e-prints

[15] Kokkinis, I., Maksimović, P., Ognjanović, Z., Studer, T.: First steps to-
wards probabilistic justification logic. Logic Journal of the IGPL 23(4),
662–687 (2015)

[16] Kokkinis, I., Ognjanović, Z., Studer, T.: Probabilistic justification logic.
In: Artemov, S., Nerode, A. (eds.) Symposium on Logical Foundations in
Computer Science 2016 (2016), to appear

[17] Kuznets, R.: On the complexity of explicit modal logics. In: Clote, P.G.,
Schwichtenberg, H. (eds.) Computer Science Logic, 14th International
Workshop, CSL 2000, Annual Conference of the EACSL, Fischbachau,
Germany, August 21–26, 2000, Proceedings, Lecture Notes in Computer
Science, vol. 1862, pp. 371–383. Springer (2000)

20

http://plato.stanford.edu/archives/fall2012/entries/logic-justification/

[18] Kuznets, R.: Complexity Issues in Justification Logic.
Ph.D. thesis, City University of New York (May 2008),
http://gradworks.umi.com/33/10/3310747.html

[19] Kuznets, R., Studer, T.: Justifications, ontology, and conservativity. In:
Bolander, T., Braüner, T., Ghilardi, S., Moss, L. (eds.) Advances in Modal
Logic, Volume 9, pp. 437–458. College Publications (2012)

[20] Milnikel, R.S.: Derivability in certain subsystems of the Logic of Proofs
is Πp

2-complete. Annals of Pure and Applied Logic 145(3), 223–239 (Mar
2007)

[21] Milnikel, R.S.: The logic of uncertain justifications. Annals of Pure and
Applied Logic 165(1), 305–315 (Jan 2014)

[22] Nilsson, N.: Probabilistic logic. Artificial Intelligence 28, 71–87 (1986)

[23] Ognjanović, Z., Rašković, M., Marković, Z.: Probability logics. Zbornik
radova, subseries “Logic in Computer Science” 12(20), 35–111 (2009)

[24] Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)

21

http://gradworks.umi.com/33/10/3310747.html

	1 Introduction
	2 The logics J and PJ
	3 Small Model Property
	4 Complexity
	5 Final Remarks and Conclusion

