Abstract
We propose a novel adaptive Self-Organizing Map (SOM). In the introduced approach, the SOM neurons’ neighborhood widths are computed adaptively using the information about the frequencies of occurrences of input patterns in the input space. The neighborhood widths are determined independently for each neuron in the SOM grid. In this way, the proposed SOM properly visualizes the input data, especially, when there are significant differences in frequencies of occurrences of input patterns. The experimental study on real data, on three different datasets, verifies and confirms the effectiveness of the proposed adaptive SOM.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Berglund, E., Sitte, J.: The parameterless self-organizing map algorithm. IEEE Trans. Neural Netw. 17(2), 305–316 (2006)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Chen, S., Zhou, Z., Hu, D.: Diffusion and growing self-organizing map: a nitric oxide based neural model. In: Advances in Neural Networks—ISNN 2004, Lecture Notes in Computer Science, vol. 3173 (2004)
Chengalvarayan, R., Deng, L.: HMM-based speech recognition using state-dependent, discriminatively derived transforms on mel-warped DFT features. IEEE Trans. Speech Audio Process. 2(3), 243–256 (1997)
DeSieno, D.: Adding a conscience to competitive learning. In: Proceedings of the Second IEEE International Conference on Neural Networks (ICNN-88). vol. 1, pp. 117–124. IEEE (July 1988)
Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.ics.uci.edu/ml
Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000), http://circ.ahajournals.org/cgi/content/full/101/23/e215, circulation Electronic Pages
Haese, K., Goodhill, G.J.: Auto-SOM: recursive parameter estimation for guidance of self-organizing feature maps. Neural Comput. 13(3), 595–619 (2001)
Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell. Inf. Syst. 17(2/3), 107–145 (2001)
Handl, J., Knowles, J., Kell, D.B.: Computational cluster validation in post-genomic data analysis. Bioinformatics 21(15), 3201–3212 (2005)
Heskes, T.: Self-organizing maps, vector quantization, and mixture modeling. IEEE Trans. Neural Netw. 12(6), 1299–1305 (2001)
van Hulle, M.M.: Faithful Representations and Topographic Maps: From Distortion- to Information-Based Self-Organization. Wiley, New York (2000)
Iglesias, R., Barro, S.: SOAN: self organizing with adaptive neighborhood neural network. In: Mira, J., Sánchez-Andrés, J. (eds.) Foundations and Tools for Neural Modeling. Lecture Notes in Computer Science, vol. 1606, pp. 591–600. Springer, Heidelberg (1999)
Ippoliti, D., Zhou, X.: A-GHSOM: an adaptive growing hierarchical self organizing map for network anomaly detection. J. Parallel Distrib. Comput. 72(12), 1576–1590 (2012)
Kohonen, T.: Self-Organizing Maps. 3rd edn, Springer, Heidelberg (2001)
Kohonen, T.: Essentials of the self-organizing map. Neural Netw. 37, 52–65 (2013)
Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)
Kohonen, T.: The self-organizing map. Proc. IEEE 28, 1464–1480 (1990)
Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)
van der Maaten, L., Hinton, G.E.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)
Martín-Merino, M., Muñoz, A.: Visualizing asymmetric proximities with SOM and MDS models. Neurocomputing 63, 171–192 (2005)
Mulier, F., Cherkassky, V.: Self-organization as an iterative Kernel smoothing process. Neural Comput. 7(6), 1165–1177 (1995)
Nybo, K., Venna, J., Kaski, S.: The self-organizing map as a visual neighbor retrieval method. In: Proceedings of the 6th International Workshop on Self-Organizing Maps (WSOM 2007). pp. 1–8 (2007)
Olszewski, D.: An experimental study on asymmetric self-organizing map. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) Intelligent Data Engineering and Automated Learning—IDEAL 2011. Lecture Notes in Computer Science, vol. 6936, pp. 42–49 (2011)
Olszewski, D.: \(k\)-Means clustering of asymmetric data. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Grana, M., Cho, S.B. (eds.) Hybrid Artificial Intelligent Systems. Lecture Notes in Computer Science, vol. 7208, pp. 243–254 (2012)
Olszewski, D.: Fraud detection using self-organizing map visualizing the user profiles. Knowl. Based Syst. 70, 324–334 (2014)
Olszewski, D., Kacprzyk, J., Zadrożny, S.: Time series visualization using asymmetric self-organizing map. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds.) Adaptive and Natural Computing Algorithms. Lecture Notes in Computer Science, vol. 7824, pp. 40–49. Springer, Heidelberg (2013)
Olszewski, D., Šter, B.: Asymmetric clustering using the alpha-beta divergence. Pattern Recog. 47(5), 2031–2041 (2014)
Paatero, P., Tapper, U.: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2), 111–126 (1994)
Piastra, M.: Self-organizing adaptive map: Autonomous learning of curves and surfaces from point samples. Neural Netw. 41, 96–112 (2013)
Rauber, A., Merkl, D., Dittenbach, M.: The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data. IEEE Trans. Neural Netw. 13(6), 1331–1341 (2002)
Ressom, H., Wang, D., Natarajan, P.: Adaptive double self-organizing maps for clustering gene expression profiles. Neural Netw. 16(5–6), 633–640 (2003)
Segev, A., Kantola, J.: Identification of trends from patents using self-organizing maps. Expert Syst. Appl. 39(18), 13235–13242 (2012)
Shah-Hosseini, H., Safabakhsh, R.: TASOM: A new time adaptive self-organizing map. IEEE Trans. Syst. Man Cybern. Part B Cybern. 33(2), 271–282 (2003)
Shah-Hosseini, H.: Binary tree time adaptive self-organizing map. Neurocomputing 74(11), 1823–1839 (2011)
Venna, J., Peltonen, J., Nybo, K., Aidos, H., Kaski, S.: Information retrieval perspective to nonlinear dimensionality reduction for data visualization. J. Mach. Learn. Res. 11, 451–490 (2010)
Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: Self-organizing map in Matlab: the SOM Toolbox. In: Proceedings of the Matlab DSP Conference. pp. 35–40 (1999)
Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: SOM Toolbox for Matlab 5. Tech. Rep. Report A57, Helsinki University of Technology (2000)
Villmann, T., Claussen, J.C.: Magnification control in self-organizing maps and neural gas. Neural Comput. 18(2), 446–469 (2006)
Acknowledgments
This contribution is supported by the Foundation for Polish Science under International PhD Projects in Intelligent Computing. Project financed from The European Union within the Innovative Economy Operational Programme 2007–2013 and European Regional Development Fund.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Olszewski, D., Kacprzyk, J., Zadrożny, S. (2016). An Improved Adaptive Self-Organizing Map. In: Trė, G., Grzegorzewski, P., Kacprzyk, J., Owsiński, J., Penczek, W., Zadrożny, S. (eds) Challenging Problems and Solutions in Intelligent Systems. Studies in Computational Intelligence, vol 634. Springer, Cham. https://doi.org/10.1007/978-3-319-30165-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-30165-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-30164-8
Online ISBN: 978-3-319-30165-5
eBook Packages: EngineeringEngineering (R0)