Skip to main content

Solving NP-complete Problems in Polynomial Time by Using a Natural Computing Model

  • Conference paper
  • First Online:
Information and Communication Technologies in Education, Research, and Industrial Applications (ICTERI 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 594))

Included in the following conference series:

  • 371 Accesses

Abstract

The first part of the paper is devoted to a polynomial solution of a well-known NP-complete problem (SAT problem) by using an unconventional computation model provided by P systems with active membranes (with neither polarization nor division rules). An important step of this semi-uniform solution is given by polynomial computing devices to build P systems that contain some exponential-size feature for which solving the SAT problem is easy. NP-complete problems are decision problems that can be solved in polynomial time on a non-deterministic Turing machine. Related to this step, in the second part we show how we can simulate polynomial space Turing machines by using a logarithmic space P system with active membranes, and employing a binary representation in order to encode the positions on the Turing machine tape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aman, B., Ciobanu, G.: Describing the immune system using enhanced mobile membranes. Electron. Notes Theoret. Comput. Sci. 194, 5–18 (2008)

    Article  Google Scholar 

  2. Aman, B., Ciobanu, G.: Turing completeness using three mobile membranes. In: Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G. (eds.) UC 2009. LNCS, vol. 5715, pp. 42–55. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Aman, B., Ciobanu, G.: Mobility in Process Calculi and Natural Computing. Natural Computing Series. Springer, New York (2011)

    Book  MATH  Google Scholar 

  4. Besozzi, D., Ciobanu, G.: A P system description of the Sodium-Potassium pump. In: Mauri, G., Păun, G., Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 210–223. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Bonchiş, C., Ciobanu, G., Izbaşa, C.: Encodings and arithmetic operations in membrane computing. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 621–630. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Cavaliere, M.: Evolution-communication P systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 134–145. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.): Applications of Membrane Computing. Springer, New York (2006)

    Google Scholar 

  8. Krishna, S.N., Rama, R.: P systems with replicated rewriting. J. Automata Lang. Comb. 6(3), 345–350 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Leporati, A., Gutiérrez-Naranjo, M.A.: Solving subset sum by spiking neural P Systems with pre-computed resources. Fundamenta Informaticae 87(1), 61–77 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Constant-space P systems with active membranes. Fundamenta Informaticae 134(1–2), 111–128 (2014)

    MathSciNet  Google Scholar 

  11. Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: A gap in the space hierarchy of P systems with active membranes. J. Automata Lang. Comb. 19(1–4), 173–184 (2014)

    MathSciNet  Google Scholar 

  12. Murphy, N., Woods, D.: The computational power of membrane systems under tight uniformity conditions. Nat. Comput. 10, 613–632 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Păun, G.: P systems with active membranes: attacking NP-complete problems. J. Automata Lang. Comb. 6, 75–90 (2001)

    MATH  Google Scholar 

  14. Păun, G.: Further Twenty Six Open Problems in Membrane Computing. In: Gutiérrez, M.A., et al. (eds.) Third Brainstorming Week on Membrane Computing, pp. 249–262, Fénix Editora, Sevilla (2005)

    Google Scholar 

  15. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  16. Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Jiménez, A., Woods, D.: Complexity-membrane division, membrane creation. In: [15], pp. 302–336

    Google Scholar 

  17. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Sublinear-space P systems with active membranes. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 342–357. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Aman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Aman, B., Ciobanu, G. (2016). Solving NP-complete Problems in Polynomial Time by Using a Natural Computing Model. In: Yakovyna, V., Mayr, H., Nikitchenko, M., Zholtkevych, G., Spivakovsky, A., Batsakis, S. (eds) Information and Communication Technologies in Education, Research, and Industrial Applications. ICTERI 2015. Communications in Computer and Information Science, vol 594. Springer, Cham. https://doi.org/10.1007/978-3-319-30246-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30246-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30245-4

  • Online ISBN: 978-3-319-30246-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics