Skip to main content

Analysis, Control and Circuit Simulation of a Novel 3-D Finance Chaotic System

  • Chapter
  • First Online:
Advances and Applications in Chaotic Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 636))

Abstract

There is a growing interest in developing nonlinear dynamical systems for economic models displaying chaotic behaviour. In this work, we describe an eight-term novel 3-D finance chaotic system consisting of two nonlinearities (one quadratic and one quartic). The phase portraits of the novel 3-D finance chaotic system are depicted using MATLAB. We give a dynamic analysis of the novel 3-D finance chaotic system. The novel chaotic system has three equilibrium points of which one equilibrium point on the \(x_2\) axis is a saddle point, while the other two equilibrium points are saddle-foci. The novel finance chaotic system has rotation symmetry about the \(x_2\) axis. The Lyapunov exponents of the novel finance chaotic system are obtained as \(L_1 = 0.1209\), \(L_2 = 0\) and \(L_3 = -0.4321\), while the Kaplan–Yorke dimension of the novel finance chaotic system is obtained as \(D_{KY} = 2.2798\). Since the sum of the Lyapunov exponents is negative, the novel chaotic system is dissipative. Next, we derive new results for the global chaos control of the novel finance chaotic system with unknown parameters using adaptive control method. The chaos control problem aims to regulate the states of the novel finance chaotic system to desired constant values. The main adaptive control result for the novel finance chaotic system is established using Lyapunov stability theory. Finally, an electronic circuit realization of the novel finance chaotic system using Spice is presented in detail to confirm the feasibility of the theoretical model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdurrahman A, Jiang H, Teng Z (2015) Finite-time synchronization for memristor-based neural networks with time-varying delays. Neural Netw 69:20–28

    Article  Google Scholar 

  2. Arneodo A, Coullet P, Tresser C (1981) Possible new strange attractors with spiral structure. Commun Math Phys 79(4):573–576

    Article  MathSciNet  MATH  Google Scholar 

  3. Azar AT, Vaidyanathan S (2015) Chaos modeling and control systems design, vol 581. Springer, Berlin

    Google Scholar 

  4. Bouali S, Buscarino A, Fortuna L, Frasca M, Gambuzza LV (2012) Emulating complex business cycles by using an electronic analogue. Nonlinear Anal: Real World Appl 13(6):2459–2465

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai G, Tan Z (2007) Chaos synchronization of a new chaotic system via nonlinear control. J Uncertain Syst 1(3):235–240

    Google Scholar 

  6. Chen G, Ueta T (1999) Yet another chaotic attractor. Int J Bifur Chaos 9(7):1465–1466

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen WC (2008) Dynamics and control of a financial system with time-delayed feedbacks. Chaos, Solitons Fractals 37(4):1198–1207

    Article  MATH  Google Scholar 

  8. Chen WC (2008) Nonlinear dynamics and chaos in a fractional-order financial system. Chaos, Solitons Fractals 36(5):1305–1314

    Article  Google Scholar 

  9. Fanti L, Manfredi P (2007) Chaotic business cycles and fiscal policy: an IS-LM model with distributed tax collection lags. Chaos, Solitons Fractals 32(2):736–744

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao Q, Ma J (2009) Chaos and Hopf bifurcation of a finance system. Nonlinear Dyn 58(1–2):209–216

    Google Scholar 

  11. Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50:346–349

    Google Scholar 

  12. Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Phys D: Nonlinear Phenom 9:189–208

    Article  MathSciNet  MATH  Google Scholar 

  13. Hilborn RC (2001) Chaos and nonlinear dynamics: an introduction for scientists and engineers, 2nd edn. Oxford University Press, Oxford, UK

    MATH  Google Scholar 

  14. Khalil HK (2001) Nonlinear Systems, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

  15. Lakshmanan M, Rajasekhar S (2003) Nonlinear dynamics: integrability, chaos, and patterns. Springer, Berlin

    Book  Google Scholar 

  16. Li D (2008) A three-scroll chaotic attractor. Phys Lett A 372(4):387–393

    Article  MathSciNet  MATH  Google Scholar 

  17. Lorenz EN (1963) Deterministic periodic flow. J Atmos Sci 20(2):130–141

    Article  Google Scholar 

  18. Lü J, Chen G (2002) A new chaotic attractor coined. Int J Bifurc Chaos 12(3):659–661

    Article  MathSciNet  MATH  Google Scholar 

  19. Njah AN, Sunday OD (2009) Generalization on the chaos control of 4-D chaotic systems using recursive backstepping nonlinear controller. Chaos, Solitons Fractals 41(5):2371–2376

    Article  MATH  Google Scholar 

  20. Pehlivan I, Moroz IM, Vaidyanathan S (2014) Analysis, synchronization and circuit design of a novel butterfly attractor. J Sound Vib 333(20):5077–5096

    Article  Google Scholar 

  21. Pham VT, Volos CK, Vaidyanathan S, Le TP, Vu VY (2015) A memristor-based hyperchaotic system with hidden attractors: dynamics, synchronization and circuital emulating. J Eng Sci Technol Rev 8(2):205–214

    Google Scholar 

  22. Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57(5):397–398

    Article  Google Scholar 

  23. Sampath S, Vaidyanathan S, Volos CK, Pham VT (2015) An eight-term novel four-scroll chaotic system with cubic nonlinearity and its circuit simulation. J Eng Sci Technol Rev 8(2):1–6

    Google Scholar 

  24. Sprott JC (1994) Some simple chaotic flows. Phys Rev E 50(2):647–650

    Article  MathSciNet  Google Scholar 

  25. Strogatz SH (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Perseus Books, Massachussetts

    Google Scholar 

  26. Sundarapandian V (2010) Output regulation of the Lorenz attractor. Far East J Math Sci 42(2):289–299

    MathSciNet  MATH  Google Scholar 

  27. Sundarapandian V (2013) Adaptive control and synchronization design for the Lu-Xiao chaotic system. Lect Notes Electr Eng 131:319–327

    Article  Google Scholar 

  28. Sundarapandian V (2013) Analysis and anti-synchronization of a novel chaotic system via active and adaptive controllers. J Eng Sci Technol Rev 6(4):45–52

    Google Scholar 

  29. Sundarapandian V, Pehlivan I (2012) Analysis, control, synchronization, and circuit design of a novel chaotic system. Mathe Comput Modell 55(7–8):1904–1915

    Article  MathSciNet  MATH  Google Scholar 

  30. Tigan G, Opris D (2008) Analysis of a 3D chaotic system. Chaos, Solitons Fractals 36:1315–1319

    Google Scholar 

  31. Vaidyanathan S (2011) Output regulation of Arneodo-Coullet chaotic system. Commun Comput Inf Sci 133:98–107

    Article  Google Scholar 

  32. Vaidyanathan S (2011) Output regulation of the unified chaotic system. Commun Compute Inf Sci 198:1–9

    Article  Google Scholar 

  33. Vaidyanathan S (2012) Adaptive controller and syncrhonizer design for the Qi-Chen chaotic system. Advances in computer science and information technology. Computer science and engineering, vol 84., Lecture notes of the institute for computer sciences, social-informatics and telecommunications engineeringSpringer, Berlin, pp 73–82

    Google Scholar 

  34. Vaidyanathan S (2012) Global chaos control of hyperchaotic Liu system via sliding control method. Int J Control Theory Appl 5(2):117–123

    Google Scholar 

  35. Vaidyanathan S (2012) Sliding mode control based global chaos control of Liu-Liu-Liu-Su chaotic system. Int J Control Theory Appl 5(1):15–20

    MathSciNet  Google Scholar 

  36. Vaidyanathan S (2013) A new six-term 3-D chaotic system with an exponential nonlinearity. Far East J Math Sci 79(1):135–143

    MATH  Google Scholar 

  37. Vaidyanathan S (2013) A ten-term novel 4-D hyperchaotic system with three quadratic nonlinearities and its control. Int J Control Theory Appl 6(2):97–109

    MathSciNet  Google Scholar 

  38. Vaidyanathan S (2013) Analysis and adaptive synchronization of two novel chaotic systems with hyperbolic sinusoidal and cosinusoidal nonlinearity and unknown parameters. J Eng Sci Technol Rev 6(4):53–65

    MathSciNet  Google Scholar 

  39. Vaidyanathan S (2013) Analysis, control and synchronization of hyperchaotic Zhou system via adaptive control. Adv Intell Syst Comput 177:1–10

    Article  Google Scholar 

  40. Vaidyanathan S (2014) A new eight-term 3-D polynomial chaotic system with three quadratic nonlinearities. Far East J Math Sci 84(2):219–226

    MATH  Google Scholar 

  41. Vaidyanathan S (2014) Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities. Eur Phys J: Special Top 223(8):1519–1529

    Google Scholar 

  42. Vaidyanathan S (2014) Analysis, control and synchronisation of a six-term novel chaotic system with three quadratic nonlinearities. Int J Model, Identif Control 22(1):41–53

    Article  Google Scholar 

  43. Vaidyanathan S (2014) Generalized projective synchronisation of novel 3-D chaotic systems with an exponential non-linearity via active and adaptive control. Int J Model, Identif Control 22(3):207–217

    Article  MathSciNet  Google Scholar 

  44. Vaidyanathan S (2014) Qualitative analysis and control of an eleven-term novel 4-D hyperchaotic system with two quadratic nonlinearities. Int J Control Theory Appl 7:35–47

    Google Scholar 

  45. Vaidyanathan S (2015) 3-cells cellular neural network (CNN) attractor and its adaptive biological control. Int J PharmTech Res 8(4):632–640

    Google Scholar 

  46. Vaidyanathan S (2015) A 3-D novel highly chaotic system with four quadratic nonlinearities, its adaptive control and anti-synchronization with unknown parameters. J Eng Sci Technol Rev 8(2):106–115

    Google Scholar 

  47. Vaidyanathan S (2015) A novel chemical chaotic reactor system and its adaptive control. Int J ChemTech Res 8(7):146–158

    MathSciNet  Google Scholar 

  48. Vaidyanathan S (2015) Adaptive backstepping control of enzymes-substrates system with ferroelectric behaviour in brain waves. Int J PharmTech Res 8(2):256–261

    Google Scholar 

  49. Vaidyanathan S (2015) Adaptive biological control of generalized Lotka-Volterra three-species biological system. Int J PharmTech Res 8(4):622–631

    Google Scholar 

  50. Vaidyanathan S (2015) Adaptive chaotic synchronization of enzymes-substrates system with ferroelectric behaviour in brain waves. Int Jo PharmTech Res 8(5):964–973

    Google Scholar 

  51. Vaidyanathan S (2015) Adaptive control of a chemical chaotic reactor. Int J PharmTech Res 8(3):377–382

    Google Scholar 

  52. Vaidyanathan S (2015) Adaptive control of the FitzHugh-Nagumo chaotic neuron model. Int J PharmTech Res 8(6):117–127

    Google Scholar 

  53. Vaidyanathan S (2015) Adaptive synchronization of chemical chaotic reactors. Int J ChemTech Res 8(2):612–621

    Google Scholar 

  54. Vaidyanathan S (2015) Adaptive synchronization of generalized Lotka-Volterra three-species biological systems. Int J PharmTech Res 8(5):928–937

    Google Scholar 

  55. Vaidyanathan S (2015) Adaptive synchronization of novel 3-D chemical chaotic reactor systems. Int J ChemTech Res 8(7):159–171

    MathSciNet  Google Scholar 

  56. Vaidyanathan S (2015) Adaptive synchronization of the identical FitzHugh-Nagumo chaotic neuron models. Int J PharmTech Res 8(6):167–177

    Google Scholar 

  57. Vaidyanathan S (2015) Analysis, control and synchronization of a 3-D novel jerk chaotic system with two quadratic nonlinearities. Kyungpook Math J 55:563–586

    Article  MathSciNet  MATH  Google Scholar 

  58. Vaidyanathan S (2015) Analysis, properties and control of an eight-term 3-D chaotic system with an exponential nonlinearity. Int J Model, Identif Control 23(2):164–172

    Article  Google Scholar 

  59. Vaidyanathan S (2015) Anti-synchronization of brusselator chemical reaction systems via adaptive control. Int J ChemTech Res 8(6):759–768

    Google Scholar 

  60. Vaidyanathan S (2015) Chaos in neurons and adaptive control of Birkhoff-Shaw strange chaotic attractor. Int J PharmTech Res 8(5):956–963

    Google Scholar 

  61. Vaidyanathan S (2015) Chaos in neurons and synchronization of Birkhoff-Shaw strange chaotic attractors via adaptive control. Int J PharmTech Res 8(6):1–11

    Google Scholar 

  62. Vaidyanathan S (2015) Coleman-Gomatam logarithmic competitive biology models and their ecological monitoring. Int J PharmTech Res 8(6):94–105

    Google Scholar 

  63. Vaidyanathan S (2015) Dynamics and control of brusselator chemical reaction. Int J PharmTech Res 8(6):740–749

    Google Scholar 

  64. Vaidyanathan S (2015) Dynamics and control of tokamak system with symmetric and magnetically confined plasma. Int J PharmTech Res 8(6):795–803

    Google Scholar 

  65. Vaidyanathan S (2015) Global chaos synchronization of chemical chaotic reactors via novel sliding mode control method. Int J PharmTech Res 8(7):209–221

    MathSciNet  Google Scholar 

  66. Vaidyanathan S (2015) Global chaos synchronization of the forced Van der Pol chaotic oscillators via adaptive control method. Int J PharmTech Res 8(6):156–166

    Google Scholar 

  67. Vaidyanathan S (2015) Global chaos synchronization of the Lotka-Volterra biological systems with four competitive species via active control. Int J PharmTech Res 8(6):206–217

    Google Scholar 

  68. Vaidyanathan S (2015) Lotka-Volterra population biology models with negative feedback and their ecological monitoring. Int J PharmTech Res 8(5):974–981

    Google Scholar 

  69. Vaidyanathan S (2015) Lotka-Volterra two species competitive biology models and their ecological monitoring. Int J PharmTech Res 8(6):32–44

    Google Scholar 

  70. Vaidyanathan S (2015) Output regulation of the forced Van der Pol chaotic oscillator via adaptive control method. Int J PharmTech Res 8(6):106–116

    Google Scholar 

  71. Vaidyanathan S, Azar AT (2015) Analysis and control of a 4-D novel hyperchaotic system. Stud Comput Intell 581:3–17

    Article  Google Scholar 

  72. Vaidyanathan S, Azar AT (2015) Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In: Azar AT, Vaidyanathan S (eds) Chaos modelling and control systems design, studies in computational intelligence, vol 581. Springer, Berlin, pp 19–38

    Google Scholar 

  73. Vaidyanathan S, Madhavan K (2013) Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system. Int J Control Theory Appl 6(2):121–137

    Google Scholar 

  74. Vaidyanathan S, Pakiriswamy S (2015) A 3-D novel conservative chaotic System and its generalized projective synchronization via adaptive control. J Eng Sci Techn Rev 8(2):52–60

    Google Scholar 

  75. Vaidyanathan S, Volos C (2015) Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system. Arch Control Sci 25(3):333–353

    Google Scholar 

  76. Vaidyanathan S, Volos C, Pham VT (2014) Hyperchaos, adaptive control and synchronization of a novel 5-D hyperchaotic system with three positive Lyapunov exponents and its SPICE implementation. Arch Control Sci 24(4):409–446

    MathSciNet  MATH  Google Scholar 

  77. Vaidyanathan S, Volos C, Pham VT, Madhavan K, Idowu BA (2014) Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Arch Control Sci 24(3):375–403

    MathSciNet  MATH  Google Scholar 

  78. Vaidyanathan S, Idowu BA, Azar AT (2015) Backstepping controller design for the global chaos synchronization of Sprott’s jerk systems. Stud Comput Intell 581:39–58

    Article  Google Scholar 

  79. Vaidyanathan S, Rajagopal K, Volos CK, Kyprianidis IM, Stouboulos IN (2015) Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system with three quadratic nonlinearities and its digital implementation in LabVIEW. J Eng Sci Technol Rev 8(2):130–141

    Google Scholar 

  80. Vaidyanathan S, Volos C, Pham VT, Madhavan K (2015) Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation. Arch Control Sci 25(1):135–158

    Google Scholar 

  81. Vaidyanathan S, Volos CK, Kyprianidis IM, Stouboulos IN, Pham VT (2015) Analysis, adaptive control and anti-synchronization of a six-term novel jerk chaotic system with two exponential nonlinearities and its circuit simulation. J Eng Sci Technol Rev 8(2):24–36

    Google Scholar 

  82. Vaidyanathan S, Volos CK, Pham VT (2015) Analysis, adaptive control and adaptive synchronization of a nine-term novel 3-D chaotic system with four quadratic nonlinearities and its circuit simulation. J Eng Sci Technol Rev 8(2):181–191

    Google Scholar 

  83. Vaidyanathan S, Volos CK, Pham VT (2015) Analysis, control, synchronization and SPICE implementation of a novel 4-D hyperchaotic Rikitake dynamo system without equilibrium. J Eng Sci Technol Rev 8(2):232–244

    Google Scholar 

  84. Vaidyanathan S, Volos CK, Pham VT (2015) Global chaos control of a novel nine-term chaotic system via sliding mode control. In: Azar AT, Zhu Q (eds) Advances and applications in sliding mode control systems, studies in computational intelligence, vol 576. Springer, Berlin, pp 571–590

    Google Scholar 

  85. Vincent UE, Njah AN, Laoye JA (2007) Controlling chaos and deterministic directed transport in inertia ratchets using backstepping control. Phys D 231(2):130–136

    Article  MathSciNet  MATH  Google Scholar 

  86. Volos CK, Stavrinides SG, Kyprianidis IM, Stouboulos IN, Magafas I, Anagnostopoulos AN (2011) Nonlinear financial dynamics from an engineer’s point of view. J Eng Sci Technol Rev 4(3):281–285

    Google Scholar 

  87. Volos CK, Kyprianidis IM, Stouboulos IN (2012) Synchronization phenomena in coupled nonlinear systems applied in economic cycles. WSEAS Trans Syst 11(12):681–690

    Google Scholar 

  88. Volos CK, Kyprianidis IM, Stouboulos IN (2015) The effect of foreign direct investment in economic growth from the perspective of nonlinear dynamics. J Eng Sci Technol Rev 8(1):1–7

    Google Scholar 

  89. Volos CK, Kyprianidis IM, Stouboulos IN, Tlelo-Cuautle E, Vaidyanathan S (2015) Memristor: a new concept in synchronization of coupled neuromorphic circuits. J Eng Sci Technol Rev 8(2):157–173

    Google Scholar 

  90. Zhou W, Xu Y, Lu H, Pan L (2008) On dynamics analysis of a new chaotic attractor. Phys Lett A 372(36):5773–5777

    Article  MathSciNet  MATH  Google Scholar 

  91. Zhu C, Liu Y, Guo Y (2010) Theoretic and numerical study of a new chaotic system. Intell Inf Manage 2:104–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vaidyanathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vaidyanathan, S., Volos, C.K., Tacha, O.I., Kyprianidis, I.M., Stouboulos, I.N., Pham, VT. (2016). Analysis, Control and Circuit Simulation of a Novel 3-D Finance Chaotic System. In: Vaidyanathan, S., Volos, C. (eds) Advances and Applications in Chaotic Systems . Studies in Computational Intelligence, vol 636. Springer, Cham. https://doi.org/10.1007/978-3-319-30279-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30279-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30278-2

  • Online ISBN: 978-3-319-30279-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics