Skip to main content

Evolutionary Fuzzy Systems: A Case Study in Imbalanced Classification

  • Chapter
  • First Online:
Fuzzy Logic and Information Fusion

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 339))

Abstract

The use of evolutionary algorithms for designing fuzzy systems provides them with learning and adaptation capabilities, resulting on what is known as Evolutionary Fuzzy Systems. These types of systems have been successfully applied in several areas of Data Mining, including standard classification, regression problems and frequent pattern mining. This is due to their ability to adapt their working procedure independently of the context we are addressing. Specifically, Evolutionary Fuzzy Systems have been lately applied to a new classification problem showing good and accurate results. We are referring to the problem of classification with imbalanced datasets, which is basically defined by an uneven distribution between the instances of the classes. In this work, we will first introduce some basic concepts on linguistic fuzzy rule based systems. Then, we will present a complete taxonomy for Evolutionary Fuzzy Systems. Then, we will review several significant proposals made in this research area that have been developed for addressing classification with imbalanced datasets. Finally, we will show a case study from which we will highlight the good behavior of Evolutionary Fuzzy Systems in this particular context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.keel.es/imbalanced.php.

References

  1. A. Konar, Computational Intelligence: Principles, Techniques and Applications (Springer, Berlin, 2005)

    Book  MATH  Google Scholar 

  2. R.R. Yager, D.P. Filev, Essentials of Fuzzy Modeling and Control (Wiley, 1994)

    Google Scholar 

  3. D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley Professional, Upper Saddle River, 1989)

    MATH  Google Scholar 

  4. J.H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor, 1975)

    Google Scholar 

  5. O. Cordon, F. Herrera, F. Hoffmann, L. Magdalena, Genetic fuzzy systems. Evolutionary Tuning and Learning of Fuzzy Knowledge Bases (World Scientific, Singapore, Republic of Singapore, 2001)

    Google Scholar 

  6. A. Fernandez, V. Lopez, M.J. del Jesus, F. Herrera, Revisiting evolutionary fuzzy systems: taxonomy, applications, new trends and challenges. Knowl. Based Syst. 80, 109–121 (2015)

    Article  Google Scholar 

  7. A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computation (Springer, Berlin, 2003)

    Book  MATH  Google Scholar 

  8. C.A. Coello-Coello, G. Lamont, D. van Veldhuizen, Evolutionary Algorithms for Solving Multi-objective Problems, Genetic and Evolutionary Computation, 2nd edn. (Springer, Berlin, 2007)

    Google Scholar 

  9. K. Deb, Multi-objective Optimization using Evolutionary Algorithms (Wiley, New York, 2001)

    MATH  Google Scholar 

  10. M. Fazzolari, R. Alcala, Y. Nojima, H. Ishibuchi, F. Herrera, A review of the application of multi-objective evolutionary systems: current status and further directions. IEEE Trans. Fuzzy Syst. 21(1), 45–65 (2013)

    Article  Google Scholar 

  11. J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques, 3rd edn. (Morgan Kaufmann, San Mateo, 2011)

    MATH  Google Scholar 

  12. V. Lopez, A. Fernandez, S. Garcia, V. Palade, F. Herrera, An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 250(20), 113–141 (2013)

    Article  Google Scholar 

  13. R.C. Prati, G.E.A.P.A., Batista, D.F. Silva, Class imbalance revisited: a new experimental setup to assess the performance of treatment methods. Knowl. Inf. Syst. 45(1), 247–270 (2015)

    Google Scholar 

  14. A. Fernandez, S. Garcia, M.J. del Jesus, F. Herrera, A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets. Fuzzy Sets Syst. 159(18), 2378–2398 (2008)

    Article  MathSciNet  Google Scholar 

  15. S. Alshomrani, A. Bawakid, S.O. Shim, A. Fernandez, F. Herrera, A proposal for evolutionary fuzzy systems using feature weighting: dealing with overlapping in imbalanced datasets. Knowl.-Based Syst. 73, 1–17 (2015)

    Article  Google Scholar 

  16. V. Garcia, R.A. Mollineda, J.S. Sanchez, On the k-NN performance in a challenging scenario of imbalance and overlapping. Pattern Anal. Appl. 11(3–4), 269–280 (2008)

    Article  MathSciNet  Google Scholar 

  17. A. Fernandez, M.J. del Jesus, F. Herrera, Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets. Int. J. Approximate Reasoning 50, 561–577 (2009)

    Article  MATH  Google Scholar 

  18. A. Palacios, L. Sanchez, I. Couso, Equalizing imbalanced imprecise datasets for genetic fuzzy classifiers. Int. J. Comput. Intell. Syst. 5(2), 276–296 (2012)

    Article  Google Scholar 

  19. V. Lopez, A. Fernandez, M.J. del Jesus, F. Herrera, A hierarchical genetic fuzzy system based on genetic programming for addressing classification with highly imbalanced and borderline data-sets. Knowl. Based Syst. 38, 85–104 (2013)

    Article  Google Scholar 

  20. L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications (Prentice-Hall, 1995)

    Google Scholar 

  22. H. Zimmermann, Fuzzy set theory. WIREs Comput. Stat. 2(3), 317–332 (2010)

    Article  Google Scholar 

  23. W. Pedrycz, F. Gomide, An Introduction to Fuzzy Sets: Analysis and Design (Prentice-Hall, 1998)

    Google Scholar 

  24. L.A. Zadeh, The concept of a linguistic variable and its applications to approximate reasoning. part I. Inf. Sci. 8, 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  25. L.A. Zadeh, The concept of a linguistic variable and its applications to approximate reasoning. part II. Inf. Sci. 8, 301–357 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  26. L.A. Zadeh, The concept of a linguistic variable and its applications to approximate reasoning. part III. Inf. Sci. 9, 43–80 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  27. E.H. Mamdani, Applications of fuzzy algorithm for control a simple dynamic plant. Proc. Inst. Electr. Eng. 121(12), 1585–1588 (1974)

    Article  Google Scholar 

  28. W.H. Au, K.C.C. Chan, A.K.C. Wong, A fuzzy approach to partitioning continuous attributes for classification. IEEE Trans. Knowl. Data Eng. 18(5), 715–719 (2006)

    Article  Google Scholar 

  29. O. Cordon, F. Herrera, P. Villar, Analysis and guidelines to obtain a good fuzzy partition granularity for fuzzy rule-based systems using simulated annealing. Int. J. Approximate Reasoning 25(3), 187–215 (2000)

    Article  MATH  Google Scholar 

  30. E.H. Mamdani, Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans. Comput. 26(12), 1182–1191 (1977)

    Article  MATH  Google Scholar 

  31. O. Cordon, F. Gomide, F. Herrera, F. Hoffmann, L. Magdalena, Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets Syst. 141, 5–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. O. Cordon, A historical review of evolutionary learning methods for mamdani-type fuzzy rule-based systems: designing interpretable genetic fuzzy systems. Int. J. Approximate Reasoning 52(6), 894–913 (2011)

    Article  Google Scholar 

  33. F. Herrera, Genetic fuzzy systems: taxonomy, current research trends and prospects. Evol. Intel. 1(1), 27–46 (2008)

    Article  MathSciNet  Google Scholar 

  34. H. Ishibuchi, K. Nozaki, N. Yamamoto, H. Tanaka, Selection of fuzzy IF-THEN rules for classification problems using genetic algorithms. IEEE Trans. Fuzzy Syst. 3(3), 260–270 (1995)

    Article  Google Scholar 

  35. A. Homaifar, E. McCormick, Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms. IEEE Trans. Fuzzy Syst. 3(2), 129–139 (1995)

    Article  Google Scholar 

  36. P. Thrift, Fuzzy logic synthesis with genetic algorithms, in Proceedings of the 4th International Conference on Genetic Algorithms (ICGA’91). pp. 509–513 (1991)

    Google Scholar 

  37. O. Cordon, F. Herrera, P. Villar, Generating the knowledge base of a fuzzy rule-based system by the genetic learning of data base. IEEE Trans. Fuzzy Syst. 9(4), 667–674 (2001)

    Article  MATH  Google Scholar 

  38. F. Marquez, A. Peregrín, F. Herrera, Cooperative evolutionary learning of linguistic fuzzy rules and parametric aggregation connectors for mamdani fuzzy systems. IEEE Trans. Fuzzy Syst. 15(6), 1162–1178 (2008)

    Article  Google Scholar 

  39. J. Casillas, O. Cordon, M.J. del Jesus, F. Herrera, Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction. IEEE Trans. Fuzzy Syst. 13(1), 13–29 (2005)

    Article  Google Scholar 

  40. J. Alcala-Fdez, F. Herrera, F.A. Marquez, A. Peregrin, Increasing fuzzy rules cooperation based on evolutionary adaptive inference systems. Int. J. Intell. Syst. 22(9), 1035–1064 (2007)

    Article  MATH  Google Scholar 

  41. D. Kim, Y. Choi, S.Y. Lee, An accurate cog defuzzifier design using lamarckian co-adaptation of learning and evolution. Fuzzy Sets Syst. 130(2), 207–225 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. M.J. Gacto, R. Alcala, F. Herrera, Interpretability of linguistic fuzzy rule-based systems: an overview of interpretability measures. Inf. Sci. 181(20), 4340–4360 (2011)

    Article  MATH  Google Scholar 

  43. H. Ishibuchi, T. Murata, I. Turksen, Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems. Fuzzy Sets Syst. 8(2), 135–150 (1997)

    Article  Google Scholar 

  44. M.J. Gacto, R. Alcala, F. Herrera, Adaptation and application of multi-objective evolutionary algorithms for rule reduction and parameter tuning of fuzzy rule-based systems. Soft. Comput. 13(5), 419–436 (2009)

    Article  Google Scholar 

  45. N.N. Karnik, J.M. Mendel, Q. Liang, Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7(6), 643–658 (1999)

    Article  Google Scholar 

  46. R. Sambuc, Function \(\varPhi -\)Flous, Application a l’aide au Diagnostic en Pathologie Thyroidienne. Ph.D. thesis, University of Marseille (1975)

    Google Scholar 

  47. O. Castillo, P. Melin, Optimization of type-2 fuzzy systems based on bio-inspired methods: a concise review. Inf. Sci. 205, 1–19 (2012)

    Article  MathSciNet  Google Scholar 

  48. O. Castillo, P. Melin, A.A. Garza, O. Montiel, R. Sepulveda, Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms. Soft. Comput. 15(6), 1145–1160 (2011)

    Article  Google Scholar 

  49. C. Wagner, H. Hagras, A genetic algorithm based architecture for evolving type-2 fuzzy logic controllers for real world autonomous mobile robots, in FUZZ-IEEE. pp. 1–6. IEEE (2007)

    Google Scholar 

  50. J.A. Sanz, A. Fernandez, H. Bustince, F. Herrera, Improving the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets and genetic amplitude tuning. Inf. Sci. 180(19), 3674–3685 (2010)

    Article  Google Scholar 

  51. J. Sanz, A. Fernandez, H. Bustince, F. Herrera, A genetic tuning to improve the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets: degree of ignorance and lateral position. Int. J. Approximate Reasoning 52(6), 751–766 (2011)

    Article  Google Scholar 

  52. J.A. Sanz, A. Fernandez, H. Bustince, F. Herrera, IVTURS: a linguistic fuzzy rule-based classification system based on a new interval-valued fuzzy reasoning method with tuning and rule selection. IEEE Trans. Fuzzy Syst. 21(3), 399–411 (2013)

    Article  Google Scholar 

  53. H. He, E.A. Garcia, Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  54. V. Lopez, A. Fernandez, J.G. Moreno-Torres, F. Herrera, Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics. Expert Syst. Appl. 39(7), 6585–6608 (2012)

    Article  Google Scholar 

  55. Y. Sun, A.K.C. Wong, M.S. Kamel, Classification of imbalanced data: a review. Int. J. Pattern Recognit. Artif. Intell. 23(4), 687–719 (2009)

    Article  Google Scholar 

  56. C. Elkan, The foundations of cost-sensitive learning, in Proceedings of the 17th IEEE International Joint Conference on Artificial Intelligence (IJCAI’01). pp. 973–978 (2001)

    Google Scholar 

  57. B. Zadrozny, J. Langford, N. Abe, Cost-sensitive learning by cost-proportionate example weighting, in Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM’03). pp. 435–442 (2003)

    Google Scholar 

  58. Q. Yang, X. Wu, 10 challenging problems in data mining research. Int. J. Inform. Technol. Decis. Making 5(4), 597–604 (2006)

    Article  Google Scholar 

  59. S.J. Lin, M.F. Hsu, Enhanced risk management by an emerging multi-agent architecture. Connection Sci. 26(3), 245–259 (2014)

    Article  Google Scholar 

  60. M. Hao, Y. Wang, S.H. Bryant, An efficient algorithm coupled with synthetic minority over-sampling technique to classify imbalanced pubchem bioassay data. Anal. Chim. Acta 806, 117–127 (2014)

    Article  Google Scholar 

  61. R. Oentaryo, E.P. Lim, M. Finegold, D. Lo, F. Zhu, C. Phua, E.Y. Cheu, G.E. Yap, K. Sim, M.N. Nguyen, K. Perera, B. Neupane, M. Faisal, Z. Aung, W.L. Woon, W. Chen, D. Patel, D. Berrar, Detecting click fraud in online advertising: a data mining approach. J. Mach. Learn. Res. 15, 99–140 (2014)

    MathSciNet  Google Scholar 

  62. W.Y. Hwang, J.S. Lee, Shifting artificial data to detect system failures. Int. Trans. Oper. Res. 22(2), 363–378 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  63. B. Krawczyk, G. Schaefer, A hybrid classifier committee for analysing asymmetry features in breast thermograms. Appl. Soft Comput. J. 20, 112–118 (2014)

    Article  Google Scholar 

  64. C. Lu, M. Mandal, Toward automatic mitotic cell detection and segmentation in multispectral histopathological images. IEEE J. Biomed. Health Inform. 18(2), 594–605 (2014)

    Article  Google Scholar 

  65. A. Orriols-Puig, E.B. Mansilla, Evolutionary rule-based systems for imbalanced datasets. Soft. Comput. 13(3), 213–225 (2009)

    Article  Google Scholar 

  66. M. Wasikowski, X.W. Chen, Combating the small sample class imbalance problem using feature selection. IEEE Trans. Knowl. Data Eng. 22(10), 1388–1400 (2010)

    Article  Google Scholar 

  67. G.M. Weiss, in The Impact of Small Disjuncts on Classifier Learning, eds. by R. Stahlbock, S.F. Crone, S. Lessmann. Data Mining, Annals of Information Systems, vol. 8 (Springer, 2010), pp. 193–226

    Google Scholar 

  68. J. Stefanowski, Overlapping, rare examples and class decomposition in learning classifiers from imbalanced data. Smart Innovation Syst. Technol. 13, 277–306 (2013)

    Article  Google Scholar 

  69. C. Seiffert, T.M. Khoshgoftaar, J. Van Hulse, A. Folleco, An empirical study of the classification performance of learners on imbalanced and noisy software quality data. Inf. Sci. 259, 571–595 (2014)

    Article  Google Scholar 

  70. J.G. Moreno-Torres, T. Raeder, R. Alaiz-Rodriguez, N.V. Chawla, F. Herrera, A unifying view on dataset shift in classification. Pattern Recogn. 45(1), 521–530 (2012)

    Article  Google Scholar 

  71. G.E.A.P.A. Batista, R.C. Prati, M.C. Monard, A study of the behaviour of several methods for balancing machine learning training data. SIGKDD Explor. 6(1), 20–29 (2004)

    Google Scholar 

  72. N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    MATH  Google Scholar 

  73. V. Lopez, I. Triguero, C.J. Carmona, S. Garcia, F. Herrera, Addressing imbalanced classification with instance generation techniques: IPADE-ID. Neurocomputing 126, 15–28 (2014)

    Article  Google Scholar 

  74. P. Domingos, MetaCost: A general method for making classifiers cost-sensitive, in Proceedings of the 5th International Conference on Knowledge Discovery and Data Mining (KDD’99). pp. 155–164 (1999)

    Google Scholar 

  75. B. Zadrozny, C. Elkan, Learning and making decisions when costs and probabilities are both unknown, in Proceedings of the 7th International Conference on Knowledge Discovery and Data Mining (KDD’01). pp. 204–213 (2001)

    Google Scholar 

  76. M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, F. Herrera, A review on ensembles for class imbalance problem: bagging, boosting and hybrid based approaches. IEEE Trans. Syst. Man Cybern.—Part C: Appl. Rev. 42(4), 463–484 (2012)

    Article  Google Scholar 

  77. W. Fan, S.J. Stolfo, J. Zhang, P.K. Chan, AdaCost: misclassification cost-sensitive boosting, in Proceedings of the 16th International Conference on Machine Learning (ICML’96). pp. 97–105 (1999)

    Google Scholar 

  78. C. Seiffert, T.M. Khoshgoftaar, J. Van Hulse, A. Napolitano, RUSBoost: a hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern.—Part A 40(1), 185–197 (2010)

    Article  Google Scholar 

  79. S. Wang, X. Yao, Diversity analysis on imbalanced data sets by using ensemble models, in Proceedings of the 2009 IEEE Symposium on Computational Intelligence and Data Mining (CIDM’09). pp. 324–331 (2009)

    Google Scholar 

  80. R. Barandela, J.S. Sanchez, V. Garcia, E. Rangel, Strategies for learning in class imbalance problems. Pattern Recogn. 36(3), 849–851 (2003)

    Article  Google Scholar 

  81. A. Fernandez, M.J. del Jesus, F. Herrera, On the influence of an adaptive inference system in fuzzy rule based classification systems for imbalanced data-sets. Expert Syst. Appl. 36(6), 9805–9812 (2009)

    Article  Google Scholar 

  82. L.J. Eshelman, The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination. In: Rawlin, G. (ed.) Foundations of Genetic Algorithms, pp. 265–283. Morgan Kaufman (1991)

    Google Scholar 

  83. A. Fernandez, M.J. del Jesus, F. Herrera, On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets. Inf. Sci. 180(8), 1268–1291 (2010)

    Article  MathSciNet  Google Scholar 

  84. R. Alcala, J. Alcala-Fdez, F. Herrera, A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection. IEEE Trans. Fuzzy Syst. 15(4), 616–635 (2007)

    Article  MATH  Google Scholar 

  85. Z. Chi, H. Yan, T. Pham, Fuzzy Algorithms with Applications to Image Processing and Pattern Recognition (World Scientific, 1996)

    Google Scholar 

  86. H. Ishibuchi, T. Yamamoto, T. Nakashima, Hybridization of fuzzy GBML approaches for pattern classification problems. IEEE Trans. Syst. Man Cybern.—Part B 35(2), 359–365 (2005)

    Article  Google Scholar 

  87. D.L. Wilson, Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 2(3), 408–421 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  88. J. Laurikkala, Improving identification of difficult small classes by balancing class distribution, in Proceedings of the Artificial Intelligence in Medicine, 8th Conference on AI in Medicine in Europe (AIME 2001). pp. 63–66 (2001)

    Google Scholar 

  89. P.E. Hart, The condensed nearest neighbor rule. IEEE Trans. Inf. Theory 14, 515–516 (1968)

    Article  Google Scholar 

  90. P. Villar, A. Fernandez, R.A. Carrasco, F. Herrera, Feature selection and granularity learning in genetic fuzzy rule-based classification systems for highly imbalanced data-sets. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 20(3), 369–397 (2012)

    Article  MATH  Google Scholar 

  91. V. Lopez, A. Fernandez, F. Herrera, Addressing covariate shift for genetic fuzzy systems classifiers: a case of study with FARC-HD for imbalanced datasets, in Proceedings of the 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2013). pp. 1–8 (2013)

    Google Scholar 

  92. J.G. Moreno-Torres, J.A. Saez, F. Herrera, Study on the impact of partition-induced dataset shift on k-fold cross-validation. IEEE Trans. Neural Netw. Learn. Syst. 23(8), 1304–1313 (2012)

    Article  Google Scholar 

  93. J. Alcala-Fdez, R. Alcala, F. Herrera, A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning. IEEE Trans. Fuzzy Syst. 19(5), 857–872 (2011)

    Article  Google Scholar 

  94. V. Soler, J. Cerquides, J. Sabria, J. Roig, M. Prim, Imbalanced datasets classification by fuzzy rule extraction and genetic algorithms, in Proceedings of the 2006 IEEE International Conference on Data Mining (ICDM 2006). pp. 330–334 (2006)

    Google Scholar 

  95. V. Soler, M. Prim, in Extracting a Fuzzy System by Using Genetic Algorithms for Imbalanced Datasets Classification: Application on Down’s Syndrome Detection, eds. by D.A. Zighed, S. Tsumoto, Z.W. Ras, H. Hacid. Mining Complex Data, Studies in Computational Intelligence, vol. 165 (Springer, 2009), pp. 23–39

    Google Scholar 

  96. M.R. Berthold, K.P. Huber, Constructing fuzzy graphs from examples. Intell. Data Anal. 3(1), 37–53 (1999)

    Article  MATH  Google Scholar 

  97. F.J. Berlanga, A.J. Rivera, M.J. del Jesus, F. Herrera, GP-COACH: genetic Programming-based learning of COmpact and ACcurate fuzzy rule-based classification systems for High-dimensional problems. Inf. Sci. 180(8), 1183–1200 (2010)

    Article  Google Scholar 

  98. S. Axelsson, Research in intrusion-detection systems: a survey. Technical Report 98–17, Department of Computer Engineering, Chalmers University of Technology, Goteborg, Sweden (1998)

    Google Scholar 

  99. W. Lee, S. Stolfo, A framework for constructing features and models for intrusion detection systems. ACM Trans. Inform. Syst. Secur. 3(4), 227–261 (2000)

    Article  Google Scholar 

  100. S.M. Gaffer, M.E. Yahia, K. Ragab, Genetic fuzzy system for intrusion detection: analysis of improving of multiclass classification accuracy using KDDCup-99 imbalance dataset, in Proceedings of the 2012 12th International Conference on Hybrid Intelligent Systems (HIS 2012). pp. 318–323 (2012)

    Google Scholar 

  101. S. Elhag, A. Fernandez, A. Bawakid, S. Alshomrani, F. Herrera, On the combination of genetic fuzzy systems and pairwise learning for improving detection rates on intrusion detection systems. Expert Syst. Appl. 42(1), 193–202 (2015)

    Article  Google Scholar 

  102. T. Hastie, R. Tibshirani, Classification by pairwise coupling. Ann. Stat. 26(2), 451–471 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  103. J. Sanz, D. Bernardo, F. Herrera, H. Bustince, H. Hagras, A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data. IEEE Trans. Fuzzy Syst. 23(4), 973–990 (2015)

    Article  Google Scholar 

  104. M. Mahdizadeh, M. Eftekhari, Designing fuzzy imbalanced classifier based on the subtractive clustering and genetic programming, in Proceedings of the 13th Iranian Conference on Fuzzy Systems (IFSC 2013). pp. 318–323 (2013)

    Google Scholar 

  105. V. Lopez, A. Fernandez, F. Herrera, A first approach for cost-sensitive classification with linguistic genetic fuzzy systems in imbalanced data-sets, in Proceedings of the 10th International Conference on Intelligent Systems Design and Applications (ISDA’10). pp. 676–681 (2010)

    Google Scholar 

  106. H. Ishibuchi, T. Yamamoto, Rule weight specification in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 13, 428–435 (2005)

    Article  Google Scholar 

  107. P. Ducange, B. Lazzerini, F. Marcelloni, Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets. Soft. Comput. 14(7), 713–728 (2010)

    Article  Google Scholar 

  108. D.G. Stavrakoudis, J.B. Theocharis, G.C. Zalidis, A boosted genetic fuzzy classifier for land cover classification of remote sensing imagery. ISPRS J. Photogrammetry Remote Sens. 66(4), 529–544 (2011)

    Article  Google Scholar 

  109. R.E. Schapire, A brief introduction to boosting. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence, Vol. 2 (IJCAI’99). pp. 1401–1406 (1999)

    Google Scholar 

  110. M. Antonelli, P. Ducange, F. Marcelloni, A. Segatori, Evolutionary fuzzy classifiers for imbalanced datasets: an experimental comparison, in Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS 2013). pp. 13–18 (2013)

    Google Scholar 

  111. J. Huang, C.X. Ling, Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 17(3), 299–310 (2005)

    Article  Google Scholar 

  112. O. Cordon, F. Herrera, I. Zwir, Linguistic modeling by hierarchical systems of linguistic rules. IEEE Trans. Fuzzy Syst. 10(1), 2–20 (2002)

    Article  MATH  Google Scholar 

  113. J. Alcala-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. Garcia, L. Sanchez, F. Herrera, KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Multi-Valued Logic Soft Comput. 17(2–3), 255–287 (2011)

    Google Scholar 

  114. J.R. Quinlan, C4.5: Programs for Machine Learning (Morgan Kaufmann Publishers, San Mateo-California, 1993)

    Google Scholar 

  115. S. Garcia, A. Fernandez, J. Luengo, F. Herrera, A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft. Comput. 13(10), 959–977 (2009)

    Article  Google Scholar 

  116. D. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, 2nd edn. (Chapman & Hall/CRC, 2006)

    Google Scholar 

Download references

Acknowledgments

This work have been partially supported by the Spanish Ministry of Science and Technology under projects TIN-2012-33856, TIN2014-57251-P; the Andalusian Research Plans P12-TIC-2958, P11-TIC-7765 and P10-TIC-6858; and both the University of Jaén and Caja Rural Provincial de Jaén under project UJA2014/06/15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Herrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernández, A., Herrera, F. (2016). Evolutionary Fuzzy Systems: A Case Study in Imbalanced Classification. In: Calvo Sánchez, T., Torrens Sastre, J. (eds) Fuzzy Logic and Information Fusion. Studies in Fuzziness and Soft Computing, vol 339. Springer, Cham. https://doi.org/10.1007/978-3-319-30421-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30421-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30419-9

  • Online ISBN: 978-3-319-30421-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics