Skip to main content

Mayor-Torrens t-norms in the Fuzzy Mathematical Morphology and Their Applications

  • Chapter
  • First Online:
Fuzzy Logic and Information Fusion

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 339))

Abstract

Fuzzy mathematical morphology has been extensively used in many different applications such as edge detection, noise reduction and shape and pattern recognition. The fundamentals of this morphology are based on an appropriate selection of the operators involved, namely the conjunction and implication. In this work we investigate the use of the Mayor-Torrens family of t-norms, from both theoretical and practical point of view. The results suggest that competitive results can be obtained by using the t-norms of this family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It can be downloaded from ftp://figment.csee.usf.edu/pub/ROC/edge_comparison_dataset.tar.gz.

  2. 2.

    This image database can be downloaded from http://sipi.usc.edu/database/misc.tar.gz.

References

  1. M. Baczyński, B. Jayaram, Fuzzy Implications, vol. 231 (Berlin Heidelberg, Studies in Fuzziness and Soft Computing (Springer, 2008)

    MATH  Google Scholar 

  2. M. Baczyński, B. Jayaram, S. Massanet, J. Torrens, Fuzzy implications: past, present, and future, in Springer Handbook of Computational Intelligence, ed. by J. Kacprzyk, W. Pedrycz (Springer, Berlin Heidelberg, 2015), pp. 183–202

    Chapter  Google Scholar 

  3. I. Bloch, H. Maître, Fuzzy mathematical morphologies: a comparative study. Pattern Recognit. 28, 1341–1387 (1995)

    Article  MathSciNet  Google Scholar 

  4. R. Bock, J. Meier, L.G. Nyúl, J. Hornegger, G. Michelson, Glaucoma risk index: automated glaucoma detection from color fundus images. Med. Image Anal. 14(3), 471–481 (2010)

    Article  Google Scholar 

  5. K. Bowyer, C. Kranenburg, S. Dougherty, Edge detector evaluation using empirical ROC curves, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’99), vol. 1, pp. 354–359 (1999)

    Google Scholar 

  6. A. Budai, J. Odstricilik, R. Kollar, J. Jan, T. Kubena, G. Michelson, A public database for the evaluation of fundus image segmentation algorithms, in Proceedings of The Association of Research in Vision and Ophthalmology (ARVO) Annual Meeting, Vancouver, Canada, pp. 1345–1345 (2011)

    Google Scholar 

  7. J. Canny, A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  8. B. De Baets, Fuzzy morphology: a logical approach, in Uncertainty Analysis in Engineering and Science: Fuzzy Logic, Statistics, and Neural Network Approach, ed. by B.M. Ayyub, M.M. Gupta (Kluwer Academic Publishers, Norwell, 1997), pp. 53–68

    Google Scholar 

  9. B. De Baets, Generalized idempotence in fuzzy mathematical morphology, in Fuzzy Techniques in Image Processing, vol. 52. Studies in Fuzziness and Soft Computing, E.E. Kerre, M. Nachtegael Chap. 2. (Physica, New York, 2000), pp. 58–75

    Google Scholar 

  10. Diabetic Retinopathy Study Research Group and others, Photocoagulation treatment of proliferative diabetic retinopathy: clinical application of Diabetic Retinopathy Study (DRS) findings, DRS Report Number 8. Ophthalmology 88(7), 583–600 (1981)

    Article  Google Scholar 

  11. J. Fodor, M. Roubens, Fuzzy Preference Modelling and Multicriteria Decision Support. Knowledge Engineering and Problem Solving (Kluwer Academic Publishers, Dordrecht, 1994) (System Theory)

    Google Scholar 

  12. M. González, D. Ruiz-Aguilera, J. Torrens, Algebraic properties of fuzzy morphological operators based on uninorms, in Artificial Intelligence Research and Development. Frontiers in Artificial Intelligence and Applications, vol. 100 (IOS Press, Amsterdam, 2003), pp. 27–38

    Google Scholar 

  13. M. González-Hidalgo, S. Massanet, Closing and opening based on discrete t-norms. Applications to natural image analysis, in Proceedings of the 7th Conference of the European Society for Fuzzy Logic and Technology, EUSFLAT 2011, Aix-Les-Bains, France, 18–22 July 2011, pp 358–365 (2011)

    Google Scholar 

  14. M. González-Hidalgo, S. Massanet, A fuzzy mathematical morphology based on discrete t-norms: fundamentals and applications to image processing. Soft Comput. 18(11), 2297–2311 (2014)

    Article  MATH  Google Scholar 

  15. M. González-Hidalgo, S. Massanet, A. Mir, D. Ruiz-Aguilera, A fuzzy filter for high-density salt and pepper noise removal, in Advances in Artificial Intelligence, vol. 8109, Lecture Notes in Computer Science, ed. by C. Bielza, et al. (Springer, Berlin, 2013), pp. 70–79

    Chapter  Google Scholar 

  16. M. González-Hidalgo, S. Massanet, A. Mir, D. Ruiz-Aguilera, High-density impulse noise removal using fuzzy mathematical morphology, in Proceedings of the 8th Conference of the European Society of Fuzzy Logic and Technology Conference (EUSFLAT 2013), ed. by G. Pasi, J. Montero, D. Ciucci (Atlantis Press, Milano, Italy, 2013), pp. 728–735

    Google Scholar 

  17. M. González-Hidalgo, S. Massanet, A. Mir, D. Ruiz-Aguilera, On the choice of the pair conjunction-implication into the fuzzy morphological edge detector. IEEE Trans. Fuzzy Syst. 23(4), 872–884 (2015)

    Article  Google Scholar 

  18. M. González-Hidalgo, A. Mir-Torres, D. Ruiz-Aguilera, J. Torrens, Image analysis applications of morphological operators based on uninorms, in Proceedings of the IFSA-EUSFLAT 2009 Conference, Lisbon, Portugal, pp. 630–635 (2009)

    Google Scholar 

  19. M. González-Hidalgo, S. Massanet, A. Mir, D. Ruiz-Aguilera, A fuzzy morphological hit-or-miss transform for grey-level images: a new approach. Fuzzy Sets Syst. 286, 30-65 (2016)

    Google Scholar 

  20. E. Kerre, M. Nachtegael, Fuzzy Techniques in Image Processing, vol. 52 (Studies in Fuzziness and Soft Computing (Springer, New York, 2000)

    Book  MATH  Google Scholar 

  21. E. Klement, R. Mesiar, E. Pap, Triangular Norms (Kluwer Academic Publishers, London, 2000)

    Book  MATH  Google Scholar 

  22. P.D. Kovesi, MATLAB and Octave functions for computer vision and image processing. Centre for Exploration Targeting, School of Earth and Environment, The University of Western Australia. Retrieved from: http://www.csse.uwa.edu.au/_pk/research/matlabfns/ in 1994

  23. D. Lesage, E.D. Angelini, I. Bloch, G. Funka-Lea, A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)

    Article  Google Scholar 

  24. C. Lopez-Molina, B. De Baets, H. Bustince, Quantitative error measures for edge detection. Pattern Recognit. 46(4), 1125–1139 (2013)

    Article  Google Scholar 

  25. M. Mas, M. Monserrat, J. Torrens, E. Trillas, A survey on fuzzy implication functions. IEEE Trans. Fuzzy Syst. 15(6), 1107–1121 (2007)

    Article  Google Scholar 

  26. G. Mayor, J. Torrens, On a family of t-norms. Fuzzy Sets Syst. 41, 161–166 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Medina-Carnicer, R. Muoz-Salinas, E. Yeguas-Bolivar, L. Diaz-Mas, A novel method to look for the hysteresis thresholds for the Canny edge detector. Pattern Recognit. 44(6), 1201–1211 (2011)

    Article  Google Scholar 

  28. M. Nachtegael, E. Kerre, Classical and fuzzy approaches towards mathematical morphology, in Fuzzy Techniques in Image Processing, vol. 52. E.E. Kerre, M. Nachtegael. Studies in Fuzziness and Soft Computing, Chap. 1 (Physica, New York, 2000), pp. 3–57

    Google Scholar 

  29. N. Otsu, A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  30. G. Papari, N. Petkov, Edge and line oriented contour detection: state of the art. Image Vis. Comput. 29(2–3), 79–103 (2011)

    Article  Google Scholar 

  31. W.K. Pratt, Digital Image Processing, 4th edn. (Wiley-Interscience, 2007)

    Google Scholar 

  32. C. Rijsbergen, Information Retrieval (Butterworths, 1979)

    Google Scholar 

  33. S. Schulte, V. De Witte, M. Nachtegael, D. Van der Weken, E. Kerre, Fuzzy random impulse noise reduction method. Fuzzy Sets Syst. 158(3), 270–283 (2007)

    Article  MathSciNet  Google Scholar 

  34. J. Serra, Image Analysis and Mathematical Morphology, vols. 1, 2 (Academic Press, London, 1982)

    Google Scholar 

  35. J.V. Soares, J.J. Leandro, R.M. Cesar Jr., H.F. Jelinek, M.J. Cree, Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25(9), 1214–1222 (2006)

    Article  Google Scholar 

  36. J. Staal, M.D. Abràmoff, M. Niemeijer, M. Viergever, B. Van Ginneken et al., Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  37. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  38. C. Wilkinson, F.L. Ferris, R.E. Klein, P.P. Lee, C.D. Agardh, M. Davis, D. Dills, A. Kampik, R. Pararajasegaram, J.T. Verdaguer et al., Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110(9), 1677–1682 (2003)

    Article  Google Scholar 

  39. F. Zana, J.-C. Klein, Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 10(7), 1010–1019 (2001)

    Article  MATH  Google Scholar 

  40. D. Ze-Feng, Y. Zhou-Ping, X. You-Lun, High probability impulse noise-removing algorithm based on mathematical morphology. IEEE Signal Process. Lett. 14(1), 31–34 (2007)

    Article  Google Scholar 

  41. K. Zuiderveld, Contrast limited adaptive histogram equalization, in Graphics Gems IV (Academic Press Professional Inc, 1994), pp. 474–485

    Google Scholar 

Download references

Acknowledgments

This project was partially supported by the Spanish project TIN 2013-42795-P. P. Bibiloni also benefited from a fellowship of the Conselleria d’Educaci, Cultura i Universitats of the Govern de les Illes Balears under an operational program co-financed by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. González-Hidalgo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bibiloni, P., González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D. (2016). Mayor-Torrens t-norms in the Fuzzy Mathematical Morphology and Their Applications. In: Calvo Sánchez, T., Torrens Sastre, J. (eds) Fuzzy Logic and Information Fusion. Studies in Fuzziness and Soft Computing, vol 339. Springer, Cham. https://doi.org/10.1007/978-3-319-30421-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30421-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30419-9

  • Online ISBN: 978-3-319-30421-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics