Abstract
Android applications often rely on alarms to schedule background tasks. Since Android KitKat, applications can opt-in for deferrable alarms, which allows the OS to perform alarm batching to reduce device awake time and increase the chances of network traffic being generated simultaneously by different applications. This mechanism can result in significant battery savings if appropriately adopted.
In this paper we perform a large scale study of the 22,695 most popular free applications in the Google Play Market to quantify whether expectations of more energy efficient background app execution are indeed warranted. We identify a significant chasm between the way application developers build their apps and Android’s attempt to address energy inefficiencies of background app execution. We find that close to half of the applications using alarms do not benefit from alarm batching capabilities. The reasons behind this is that (i) they tend to target Android SDKs lagging behind by more than 18 months, and (ii) they tend to feature third party libraries that are using non-deferrable alarms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
GIO’15, Doze - http://goo.gl/KEJURc.
- 2.
GIO’14, Project Volta - https://goo.gl/aebnwF.
- 3.
- 4.
com.ecare.android.womenhealthdiary.
- 5.
References
Alarmmanager. http://goo.gl/ncrGaO
iOS Developer Library: Background execution. https://goo.gl/xZd16w
Athivarapu, P.K., Bhagwan, R., Guha, S., Navda, V., Ramjee, R., Arora, D., Padmanabhan, V.N., Varghese, G.: RadioJockey: mining program execution to optimize cellular radio usage. In: Proceedings of the 18th Annual International Conference on Mobile Computing and Networking (2012)
Aucinas, A., Vallina-Rodriguez, N., Grunenberger, Y., Erramilli, V., Papagiannaki, K., Crowcroft, J., Wetherall, D.: Staying online while mobile: the hidden costs. In: Proceedings of the Ninth ACM Conference on Emerging Networking Experiments and Technologies (2013)
Balasubramanian, N., Balasubramanian, A., Venkataramani, A.: Energy consumption in mobile phones: a measurement study and implications for network applications. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement Conference (2009)
Gui, J., Mcilroy, S., Nagappan, M., Halfond, W.G.: Truth in advertising: the hidden cost of mobile ads for software developers. In: Proceedings of the 37th International Conference on Software Engineering (2015)
Han, D., Zhang, C., Fan, X., Hindle, A., Wong, K., Stroulia, E.: Understanding android fragmentation with topic analysis of vendor-specific bugs. In: 19th Working Conference on Reverse Engineering (2012)
Higgins, B.D., Reda, A., Alperovich, T., Flinn, J., Giuli, T.J., Noble, B., Watson, D.: Intentional networking: opportunistic exploitation of mobile network diversity. In: Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking (2010)
Liu, H., Zhang, Y., Zhou, Y.: TailTheft: leveraging the wasted time for saving energy in cellular communications. In: Proceedings of the Sixth International Workshop on MobiArch (2011)
McDonnell, T., Ray, B., Kim, M.: An empirical study of API stability and adoption in the android ecosystem. In: Proceedings of the 2013 IEEE International Conference on Software Maintenance (2013)
Mulliner, C., Oberheide, J., Robertson, W., Kirda, E.: PatchDroid: scalable third-party security patches for android devices. In: Proceedings of the 29th Annual Computer Security Applications Conference (2013)
Nguyen, N.T., Wang, Y., Liu, X., Zheng, R., Han, Z.: A nonparametric bayesian approach for opportunistic data transfer in cellular networks. In: Wang, X., Zheng, R., Jing, T., Xing, K. (eds.) WASA 2012. LNCS, vol. 7405, pp. 88–99. Springer, Heidelberg (2012)
Park, S., Kim, D., Cha, H.: Reducing energy consumption of alarm-induced wake-ups on android smartphones. In: Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications (2015)
Qian, F., Wang, Z., Gao, Y., Huang, J., Gerber, A., Mao, Z., Sen, S., Spatscheck, O.: Periodic transfers in mobile applications: network-wide origin, impact, and optimization. In: Proceedings of the 21st International Conference on World Wide Web (2012)
Shi, C., Joshi, K., Panta, R.K., Ammar, M.H., Zegura, E.W.: CoAST: collaborative application-aware scheduling of last-mile cellular traffic. In: Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services (2014)
Vergara, E.J., Nadjm-Tehrani, S.: Energy-aware cross-layer burst buffering for wireless communication. In: Proceedings of the 3rd International Conference on Future Energy Systems: Where Energy, Computing and Communication Meet (2012)
Vergara, E.J., Sanjuan, J., Nadjm-Tehrani, S.: Kernel level energy-efficient 3g background traffic shaper for android smartphones. In: Proceedings of the 9th International Wireless Communications and Mobile Computing Conference (2013)
Viennot, N., Garcia, E., Nieh, J.: A measurement study of google play. In: The 2014 ACM International Conference on Measurement and Modeling of Computer Systems (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Almeida, M., Bilal, M., Blackburn, J., Papagiannaki, K. (2016). An Empirical Study of Android Alarm Usage for Application Scheduling. In: Karagiannis, T., Dimitropoulos, X. (eds) Passive and Active Measurement. PAM 2016. Lecture Notes in Computer Science(), vol 9631. Springer, Cham. https://doi.org/10.1007/978-3-319-30505-9_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-30505-9_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-30504-2
Online ISBN: 978-3-319-30505-9
eBook Packages: Computer ScienceComputer Science (R0)