Skip to main content

Modeling Evolutionary Dynamics of Lurking in Social Networks

  • Chapter
  • First Online:
Complex Networks VII

Part of the book series: Studies in Computational Intelligence ((SCI,volume 644))

  • 1103 Accesses

Abstract

Lurking is a complex user-behavioral phenomenon that occurs in all large-scale online communities and social networks. It generally refers to the behavior characterizing users that benefit from the information produced by others in the community without actively contributing back to the production of social content. The amount and evolution of lurkers may strongly affect an online social environment, therefore understanding the lurking dynamics and identifying strategies to curb this trend are relevant problems. In this regard, we introduce the Lurking Game, i.e., a model for analyzing the transitions from a lurking to a non-lurking (i.e., active) user role, and vice versa, in terms of evolutionary game theory. We evaluate the proposed Lurking Game by arranging agents on complex networks and analyzing the system evolution, seeking relations between the network topology and the final equilibrium of the game. Results suggest that the Lurking Game is suitable to model the lurking dynamics, showing how the adoption of rewarding mechanisms combined with the modeling of hypothetical heterogeneity of users’ interests may lead users in an online community towards a cooperative behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramson, G., Kuperman, M.: Social games in social networks. Phys. Rev. E 63 (2001)

    Google Scholar 

  2. Anand, S., Chandramouli, R., Subbalakshmi, K.P., Venkataraman, M.: Altruism in social networks: good guys do finish first. Social Netw. Anal. Mining 3(2), 167–177 (2013)

    Google Scholar 

  3. Anderson, A., Huttenlocher, D., Kleinberg, J., Leskovec, J.: Steering user behavior with badges. In: Proceedings of ACM Conference on World Wide Web (WWW) (2013)

    Google Scholar 

  4. Anderson, A., Huttenlocher, D., Kleinberg, J., Leskovec, J.: Engaging massive online courses. In: Proceedings of ACM Conference on World Wide Web (WWW) (2014)

    Google Scholar 

  5. Ardichvili, A.: Learning and knowledge sharing in virtual communities of practice: motivators, barriers, and enablers. Adv. Dev. Human Resour. 10, 541–554 (2008)

    Google Scholar 

  6. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Google Scholar 

  7. Barabasi, A.L., Albert, R.: Statistical mechanics of complex networks. Rev. Modern Phys. 74, 47–97 (2002)

    Google Scholar 

  8. Barra, A.: The mean field ising model trough interpolating techniques. J. Stat. Phys. 132(5), 787–809 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edelmann, N.: Reviewing the definitions of “lurkers” and some implications for online research. Cyberpsychol. Behav. Soc. Netw. 16(9), 645–649 (2013)

    Google Scholar 

  10. Fu, F., Rosenbloom, D.I., Wang, L., Nowak, M.A.: Imitation dynamics of vaccination behavior on social networks. R. Soc.—Proc. B 278 (2011)

    Google Scholar 

  11. Galam, S., Walliser, B.: Ising model versus normal form game. Phys. A 389, 481–489 (2010)

    Google Scholar 

  12. Interdonato, R., Pulice, C., Tagarelli, A.: “Got to have faith!”: The DEvOTION algorithm for delurking in social networks. In: Proceedings of International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 314–319 (2015)

    Google Scholar 

  13. Javarone, M.A.: Is poker a skill game? new insights from statistical physics. EPL 110 (2015)

    Google Scholar 

  14. Javarone, M.A.: Statistical physics of the spatial Prisoner’s dilemma with memory-aware agents. arXiv:1509.04558 (2015)

  15. Javarone, M.A., Atzeni, A.E.: The role of competitiveness in the Prisoner’s dilemma. Comput. Soc. Netw. 2 (2015)

    Google Scholar 

  16. Kahnwald, N., Khler, T.: Microlearning in virtual communities of practice? An explorative analysis of changing information behaviour. In: Proceedings of Microlearning Conference, pp. 157–172 (2006)

    Google Scholar 

  17. Lave, J., Wenger, E.: Situated Learning: Legitimate Peripheral Participation. Cambridge University Press (1991)

    Google Scholar 

  18. Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Nature 433, 312–316 (2004)

    Google Scholar 

  19. Malliaros, F.D., Vazirgiannis, M.: To stay or not to stay: modeling engagement dynamics in social graphs. In: Proceedings of ACM Conference on Information and Knowledge Management (CIKM), pp. 469–478 (2013)

    Google Scholar 

  20. Mobilia, M., Redner, S.: Majority versus minority dynamics: phase transition in an interacting two-state spin system. Phys. Rev. E 68(4), 046106 (2003)

    Article  Google Scholar 

  21. Perc, M., Gomez-Gardenes, J., Szolnoki, A., Floria, L.M., Moreno, Y.: Evolutionary dynamics of group interactions on structured populations: a review. J. R. Soc. Interface 10(80) (2013)

    Google Scholar 

  22. Perc, M., Szolnoki, A.: Social diversity and promotion of cooperation in the spatial Prisoner’s dilemma. Phys. Rev. E 77 (2008)

    Google Scholar 

  23. Poncela-Casasnovas, J., Gomez-Gardenes, J., Traulsen, A., Moreno, Y.: Evolutionary game dynamics in a growing structured population. New J. Phys. 11, 083031 (2009)

    Article  Google Scholar 

  24. Preece, J.J., Nonnecke, B., Andrews, D.: The top five reasons for lurking: improving community experiences for everyone. Comput. Human Behav. 20(2), 201–223 (2004)

    Article  Google Scholar 

  25. Santos, F.C., Santos, M.D., Pacheco, J.M.: Social diversity promotes the emergence of cooperation in public goods games. Nature 454, 231–216 (2008)

    Google Scholar 

  26. Van Segbroeck, S., Santos, F.C., Lenaerts, T., Pacheco, J.M.: Reacting differently to adverse ties promotes cooperation in social networks. Phys. Rev. Lett. 102, 058105 (2009)

    Google Scholar 

  27. Sun, N., Rau, P.P.-L., Ma, L.: Understanding lurkers in online communities: a literature review. Comput. Human Behav. 38, 110–117 (2014)

    Article  Google Scholar 

  28. Szabo, G., Fath, G.: Evolutionary games on graphs. Phys. Rep. 446 (2007)

    Google Scholar 

  29. Szolnoki, A., Perc, M.: Reward and cooperation in the spatial public goods game. EPL 92 (2010)

    Google Scholar 

  30. Szolnoki, A., Szabo, G., Perc, M.: Phase diagrams for the spatial public goods game with pool punishment. Phys. Rev. E 83 (2011)

    Google Scholar 

  31. Tagarelli, A., Interdonato, R.: “Who’s out there?”: identifying and ranking Lurkers in social networks. In: Proceedings of International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 215–222 (2013)

    Google Scholar 

  32. Tagarelli, A., Interdonato, R.: Lurking in social networks: topology-based analysis and ranking methods. Soc. Netw. Analys. Mining 4(230), 27 (2014)

    Google Scholar 

  33. Tomassini, M.: Introduction to Evolutionary Game Theory (2014)

    Google Scholar 

  34. Wang, Z., Szolnoki, A., Perc, M.: Interdependent network reciprocity in evolutionary games. Sci. Rep. 3, 1183 (2013)

    Google Scholar 

  35. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Tagarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Javarone, M.A., Interdonato, R., Tagarelli, A. (2016). Modeling Evolutionary Dynamics of Lurking in Social Networks. In: Cherifi, H., Gonçalves, B., Menezes, R., Sinatra, R. (eds) Complex Networks VII. Studies in Computational Intelligence, vol 644. Springer, Cham. https://doi.org/10.1007/978-3-319-30569-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30569-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30568-4

  • Online ISBN: 978-3-319-30569-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics