Skip to main content

Temporal Multi-layer Network Construction from Major News Events

  • Chapter
  • First Online:
Complex Networks VII

Part of the book series: Studies in Computational Intelligence ((SCI,volume 644))

  • 1074 Accesses

Abstract

Good news should answer the following questions: ‘Who?’, ‘Where?’, ‘When?’, ‘What?’, and possibly ‘Why?’. We present an approach which extracts interesting events from thousands of daily news. We construct a time-varying, three-layer network where the nodes are entities of interest in the news. The temporal aspect of the network answers the ‘When?’ question. The layers are: (1) the co-occurrence of entities which answers the ‘Who?’ or ‘Where?’, (2) the summary layer which answers the ‘What?’, and (3) the sentiment layer which labels the links as ‘good’ or ‘bad’ news. We demonstrate the news network evolution over a period of four years in an interactive web portal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for exploring and manipulating networks (2009)

    Google Scholar 

  3. Caldarelli, G.: Scale-Free Networks: Complex Webs in Nature and Technology. Oxford University Press, Oxford (2007)

    Book  MATH  Google Scholar 

  4. Cattuto, C., Schmitz, C., Baldassarri, A., Servedio, V.D., Loreto, V., Hotho, A., Grahl, M., Stumme, G.: Network properties of folksonomies. AI Commun. 20(4), 245–262 (2007)

    MathSciNet  Google Scholar 

  5. Cohen, A.M., Hersh, W.R., Dubay, C., Spackman, K.: Using co-occurrence network structure to extract synonymous gene and protein names from medline abstracts. BMC bioinformatics 6(1), 103 (2005)

    Article  Google Scholar 

  6. De Domenico, M., Porter, M.A., Arenas, A.: MuxViz: a tool for multilayer analysis and visualization of networks. J. Complex Netw. (2014)

    Google Scholar 

  7. Edmonds, P.: Choosing the word most typical in context using a lexical co-occurrence network. In: Proceedings of 35th Annual meeting of ACL, pp. 507–509. Association for Computational Linguistics (1997)

    Google Scholar 

  8. Fagerland, M.W.: t-tests, non-parametric tests, and large studies a paradox of statistical practice? BMC Med. Res. Methodol. 12(78) (2012)

    Google Scholar 

  9. Feldman, R., Sanger, J.: Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. Cambridge University Press, New York (2006)

    Book  Google Scholar 

  10. Freilich, S., Kreimer, A., Meilijson, I., Gophna, U., Sharan, R., Ruppin, E.: The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Res. 38(12), 3857–3868 (2010)

    Article  Google Scholar 

  11. Jackson, M.O.: Social and Economic Networks. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  12. Kralj Novak, P., Grčar, M., Sluban, B., Mozetič, I.: Analysis of financial news with newsStream. Technical report IJS-DP-11965, (2015). arXiv:1508.00027

  13. Piškorec, M., Sluban, B., Šmuc, T.: MultiNets: web-based multilayer network visualization. In: Proceedings of European Conference on ML and KDD. LNCS, vol. 9286, pp. 298–302. Springer (2015)

    Google Scholar 

  14. Popović, M., Štefančić, H., Sluban, B.: Kralj Novak, P., Grčar, M., Puliga, M., Mozetič, I., Zlatić, V.: Extraction of temporal networks from term co-occurrences in online textual sources. PLoS ONE 9(12), e99515 (2014)

    Article  Google Scholar 

  15. Ranco, G., Aleksovski, A., Caldarelli, G., Grčar, M., Mozetič, I.: The effects of Twitter sentiment on stock price returns. PLoS ONE 10(9), e138441 (2015)

    Article  Google Scholar 

  16. Rossi, L., Magnani, M.: Towards effective visual analytics on multiplex and multilayer networks. Chaos, Solitons Fractals 72, 68–76 (2015)

    Article  MathSciNet  Google Scholar 

  17. Salton, G.: Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley Longman Publishing Co., Inc, Boston (1989)

    Google Scholar 

  18. Sluban, B., Smailović, J., Battiston, S., Mozetič, I.: Sentiment leaning of influential communities in social networks. Comput. Soc. Netw. 2(9), 1–21 (2015)

    Google Scholar 

  19. Sluban, B., Smailović, J., Mozetič, I.: Understanding financial news with multi-layer network analysis. In: Proceedings of European Conference on Complex Systems, ECCS-14. Springer (2015)

    Google Scholar 

  20. Smailović, J., Kranjc, J., Grčar, M., Žnidaršič, M., Mozetič, I.: Monitoring the Twitter sentiment during the Bulgarian elections. In: Proceedings of IEEE International Conference on Data Science and Advanced Analytics. IEEE (2015)

    Google Scholar 

  21. Su, H.N., Lee, P.C.: Mapping knowledge structure by keyword co-occurrence: a first look at journal papers in technology foresight. Scientometrics 85(1), 65–79 (2010)

    Article  Google Scholar 

  22. Tetlock, P.C., Saar-Tsechansky, M., Macskassy, S.: More than words: quantifying language to measure firms’ fundamentals. J. Finan. 63(3), 1437–1467 (2008)

    Article  Google Scholar 

  23. Welch, B.L.: The generalization of "Student’s" problem when several different population variances are involved. Biometrika 34(1–2), 28–35 (1947)

    MathSciNet  MATH  Google Scholar 

  24. Zollo, F.: Kralj Novak, P., Del Vicario, M., Bessi, A., Mozetič, I., Scala, A., Caldarelli, G., Quattrociocchi, W.: Emotional dynamics in the age of misinformation. PLoS ONE 10(9), e138740 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the European Commission FP7 projects MULTIPLEX (no. 317532) and SIMPOL (no. 610704), the H2020 FET project DOLFINS (no. 640772), and by the Slovenian ARRS programme Knowledge Technologies (no. P2-103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borut Sluban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sluban, B., Grčar, M., Mozetič, I. (2016). Temporal Multi-layer Network Construction from Major News Events. In: Cherifi, H., Gonçalves, B., Menezes, R., Sinatra, R. (eds) Complex Networks VII. Studies in Computational Intelligence, vol 644. Springer, Cham. https://doi.org/10.1007/978-3-319-30569-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30569-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30568-4

  • Online ISBN: 978-3-319-30569-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics