Skip to main content

Patterns for Constructing Mutation Operators: Limiting the Search Space in a Software Engineering Application

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9594))

Included in the following conference series:

Abstract

We apply methods of genetic programming to a general problem from software engineering, namely example-based generation of specifications. In particular, we focus on model transformation by example. The definition and implementation of model transformations is a task frequently carried out by domain experts, hence, a (semi-)automatic approach is desirable. This application is challenging because the underlying search space has rich semantics, is high-dimensional, and unstructured. Hence, a computationally brute-force approach would be unscalable and potentially infeasible. To address that problem, we develop a sophisticated approach of designing complex mutation operators. We define ‘patterns’ for constructing mutation operators and report a successful case study. Furthermore, the code of the evolved model transformation is required to have high maintainability and extensibility, that is, the code should be easily readable by domain experts. We report an evaluation of this approach in a software engineering case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    OMG – MOF http://www.omg.org/spec/MOF/2.4.1/, 2015/09/09.

  2. 2.

    OMG – UML http://www.omg.org/spec/UML/2.4.1/, 2015/09/09.

  3. 3.

    Eclipse Foundation – ETL http://www.eclipse.org/epsilon, 2015/09/09.

  4. 4.

    Eclipse Foundation – EMF http://www.eclipse.org/emf/, 2015/09/09.

References

  1. Astor, J.C., Adami, C.: A developmental model for the evolution of artificial neural networks. Artif. Life 6(3), 189–218 (2000)

    Article  Google Scholar 

  2. Baki, I., Sahraoui, H., Cobbaert, Q., Masson, P., Faunes, M.: Learning implicit and explicit control in model transformations by example. In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 636–652. Springer, Heidelberg (2014)

    Google Scholar 

  3. Banzhaf, W.: Artificial regulatory networks and genetic programming. In: Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice, pp. 43–62. Kluwer, Dordrecht (2003)

    Chapter  Google Scholar 

  4. Bongard, J.: Evolving modular genetic regulatory networks. In: Proceedings of the World on Congress on Computational Intelligence, pp. 1872–1877. IEEE (2002)

    Google Scholar 

  5. Clune, J., Ofria, C., Pennock, R.T.: How a generative encoding fares as problem-regularity decreases. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 358–367. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Faunes, M., Sahraoui, H., Boukadoum, M.: Genetic-programming approach to learn model transformation rules from examples. In: Duddy, K., Kappel, G. (eds.) ICMB 2013. LNCS, vol. 7909, pp. 17–32. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Gruau, F.: Automatic definition of modular neural networks. Adapt. Behav. 3(2), 151–183 (1994)

    Article  Google Scholar 

  8. Hornby, G.S.: Generative representations for evolutionary design automation. Ph.D. thesis, Brandeis University (2003)

    Google Scholar 

  9. Hornby, G.S., Pollack, J.B.: Creating high-level components with a generative representation for body-brain evolution. Artif. Life 8(2), 223–246 (2002)

    Article  Google Scholar 

  10. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Model transformation by-example: a survey of the first wave. In: Düsterhöft, A., Klettke, M., Schewe, K.-D. (eds.) Conceptual Modelling and Its Theoretical Foundations. LNCS, vol. 7260, pp. 197–215. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Kessentini, M., Sahraoui, H., Boukadoum, M., Omar, O.B.: Search-based model transformation by example. Softw. Syst. Model. 11(2), 209–226 (2010)

    Article  Google Scholar 

  12. Kessentini, M., Sahraoui, H.A., Boukadoum, M.: Model transformation as an optimization problem. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 159–173. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Matarić, M.J., Cliff, D.: Challenges in evolving controllers for physical robots. Robot. Auton. Syst. 19(1), 67–83 (1996)

    Article  Google Scholar 

  14. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Springer, New York (2003)

    Book  MATH  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the German Research Foundation (DFG) within the Collaborative Research Centre ‘On-The-Fly Computing’ (SFB 901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Hamann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kühne, T., Hamann, H., Arifulina, S., Engels, G. (2016). Patterns for Constructing Mutation Operators: Limiting the Search Space in a Software Engineering Application. In: Heywood, M., McDermott, J., Castelli, M., Costa, E., Sim, K. (eds) Genetic Programming. EuroGP 2016. Lecture Notes in Computer Science(), vol 9594. Springer, Cham. https://doi.org/10.1007/978-3-319-30668-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30668-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30667-4

  • Online ISBN: 978-3-319-30668-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics