Skip to main content

Inferring Implicit Topical Interests on Twitter

  • Conference paper
Advances in Information Retrieval (ECIR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9626))

Included in the following conference series:

  • 4642 Accesses

Abstract

Inferring user interests from their activities in the social network space has been an emerging research topic in the recent years. While much work is done towards detecting explicit interests of the users from their social posts, less work is dedicated to identifying implicit interests, which are also very important for building an accurate user model. In this paper, a graph based link prediction schema is proposed to infer implicit interests of the users towards emerging topics on Twitter. The underlying graph of our proposed work uses three types of information: user’s followerships, user’s explicit interests towards the topics, and the relatedness of the topics. To investigate the impact of each type of information on the accuracy of inferring user implicit interests, different variants of the underlying representation model are investigated along with several link prediction strategies in order to infer implicit interests. Our experimental results demonstrate that using topics relatedness information, especially when determined through semantic similarity measures, has considerable impact on improving the accuracy of user implicit interest prediction, compared to when followership information is only used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abel, F., Gao, Q., Houben, G.-J., Tao, K.: Analyzing user modeling on twitter for personalized news recommendations. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 1–12. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Aiello, L.M., Petkos, G., Martin, C., Corney, D., Papadopoulos, S., Skraba, R., Goker, A., Kompatsiaris, I., Jaimes, A.: Sensing trending topics in twitter. IEEE Trans. Multimedia 15(6), 1268–1282 (2013)

    Article  Google Scholar 

  3. Bhattacharya, P., Muhammad, B.Z., Ganguly, N., Ghosh, S., Gummadi, K.P.: Inferring user interests in the twitter social network. In: RecSys 2014, pp. 357–360 (2014)

    Google Scholar 

  4. Cataldi, M., Di Caro, L., Schifanella, C.: Emerging topic detection on twitter based on temporal and social terms evaluation. In: IMDMKDD 2010, p. 4 (2010)

    Google Scholar 

  5. Cheng, X., Yan, X., Lan, Y., Guo, J.: Btm: Topic modeling over short texts. IEEE Trans. Knowl. Data Eng. 26(12), 2928–2941 (2014)

    Article  Google Scholar 

  6. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: ICML 2006, pp. 233–240 (2006)

    Google Scholar 

  7. Fani, H., Zarrinkalam, F., Zhao, X., Feng, Y., Bagheri, E., Du, W.: Temporal identification of latent communities on twitter (2015). arXiv preprint arxiv:1509.04227

  8. Ferragina, P., Scaiella, U.: Fast and accurate annotation of short texts with wikipedia pages. IEEE Softw. 29(1), 70–75 (2012)

    Article  Google Scholar 

  9. Kabbur, S., Ning, X., Karypis, G.: FISM: factored item similarity models for top-N recommender systems. In: KDD 2013, pp. 659–667 (2013)

    Google Scholar 

  10. Kapanipathi, P., Jain, P., Venkataramani, C., Sheth, A.: User interests identification on twitter using a hierarchical knowledge base. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 99–113. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  11. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inform. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  12. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: Homophily in social networks. Ann. Rev. Sociol. 27, pp. 415–444 (2001)

    Google Scholar 

  13. Michelson, M., Macskassy, S.A.: Discovering users’ topics of interest on twitter: A first look. In: AND 2010, pp. 73–80 (2010)

    Google Scholar 

  14. Mislove, A., Viswanath, B., Gummadi, K.P., Druschel, P.: You are who you know: inferring user profiles in online social networks. In: WSDM 2010, pp. 251–260 (2010)

    Google Scholar 

  15. Shin, Y., Ryo, C., Park, J.: Automatic extraction of persistent topics from social text streams. World Wide Web 17(6), 1395–1420 (2014)

    Article  Google Scholar 

  16. Wang, J., Zhao, W.X., He, Y., Li, X.: Infer user interests via link structure regularization. TIST 5(2), 23 (2014)

    Article  Google Scholar 

  17. Witten, I., Milne, D.: An effective, low-cost measure of semantic relatedness obtained from wikipedia links. In: WikiAI 2008, pp. 25–30 (2008)

    Google Scholar 

  18. Xu, Z., Lu, R., Xiang, L., Yang, Q.: Discovering user interest on twitter with a modified author-topic model. In: WI-IAT 2011, vol. 1, pp. 422–429 (2011)

    Google Scholar 

  19. Yang, L., Sun, T., Zhang, M., Mei, Q.: We know what@ you# tag: does the dual role affect hashtag adoption? In: WWW 2012, pp. 261–270 (2012)

    Google Scholar 

  20. Yu, Y., Wang, C., Gao, Y.: Attributes coupling based item enhanced matrix factorization technique for recommender systems. arXiv preprint. (2014). arxiv:1405.0770

  21. Zarrinkalam, F., Fani, H., Bagheri, E., Kahani, M., Du, W.: Semantics-enabled user interest detection from twitter. In: WI-IAT 2015 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fattane Zarrinkalam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zarrinkalam, F., Fani, H., Bagheri, E., Kahani, M. (2016). Inferring Implicit Topical Interests on Twitter. In: Ferro, N., et al. Advances in Information Retrieval. ECIR 2016. Lecture Notes in Computer Science(), vol 9626. Springer, Cham. https://doi.org/10.1007/978-3-319-30671-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30671-1_35

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30670-4

  • Online ISBN: 978-3-319-30671-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics