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Abstract

In collaborative recommendation systems, privacy may be compro-

mised, as users’ opinions are used to generate recommendations for oth-

ers. In this paper, we consider an online collaborative recommendation

system, and we measure users’ privacy in terms of the standard differ-

ential privacy. We give the first quantitative analysis of the trade-offs

between recommendation quality and users’ privacy in such a system by

showing a lower bound on the best achievable privacy for any non-trivial

algorithm, and proposing a near-optimal algorithm. From our results, we

find that there is actually little trade-off between recommendation quality

and privacy for any non-trivial algorithm. Our results also identify the

key parameters that determine the best achievable privacy.

Keywords: differential privacy, collaborative recommendation system,

lower bound, online algorithm

1 Introduction

In this paper we consider an online collaborative recommendation system that
attempts to predict which objects its users will like. Imagine, for example, a
news website which publishes articles every day. When a user enjoys an article,
he/she votes on the article (e.g., upvotes it, likes it, +1s it, etc). Users can
also ask the system for a recommendation, i.e., to suggest an article that they
might like. After reading the recommended article, the user gives the system
feedback on the recommendation so that it can improve its recommendation
quality. In this paper, we work with a simplified, abstract version of this very
common paradigm.

Due to the way it works, a collaborative recommendation system has the
risks of leaking its users’ privacy. Clearly, there are trade-offs between recom-
mendation quality and privacy: a system that gives completely random recom-
mendations certainly leaks no one’s privacy, but it is also useless; in contrast, a
recommendation system that gives high quality recommendations has to make
“full use” of its users’ data, which is more prone to privacy leakage.

In this paper, we adopt ǫ-differential privacy [17] as our formal definition of
privacy, and we give the first quantitative analysis of these trade-offs for online
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collaborative recommendation systems. Prior to this paper, the topic of differ-
entially private recommendation systems has primarily been examined under
offline matrix models [12,13,21,22,26,30,40]. From the theoretical perspective,
our recommendation model can be viewed as a variant of an online learning
problem. Currently, there are only a limited number of existing papers on dif-
ferentially private online learning [18, 24, 39], and their privacy models do not
fit the recommendation problem (see Section 3 for more details).

We first study the best achievable privacy for a fixed recommendation quality
by showing a near-tight lower bound on the privacy parameter ǫ (smaller ǫ means
better privacy). For example, if we were to guarantee a trivial recommendation
quality only, then we can achieve “perfect privacy” (i.e., ǫ = 0) by ignoring users’
opinions on objects and recommending randomly. As we set better and better
target recommendation quality, it might be expected that the best achievable ǫ
smoothly gets larger and larger. However, we show that the transition is sharp:
although ǫ = 0 is achievable for the trivial recommendation quality, the lower
bound of ǫ rises to a certain level as long as non-trivial recommendation quality
is to be guaranteed, and it remains essentially the same (up to a logarithmic
factor) as the target recommendation quality increases.

We then propose a novel ǫ-differentially private algorithm. Our algorithm’s ǫ
is within a logarithmic factor to the aforementioned lower bound, and meanwhile
its recommendation quality is also near-optimal up to a logarithmic factor, even
when compared to algorithms providing no privacy guarantee.

Our near matching results surprisingly imply that there are actually little
trade-offs between recommendation quality and privacy — an inherent “amount
of privacy” (up to a logarithmic factor) must be “leaked” for any algorithm with
non-trivial recommendation quality. Our results also identify the key parameters
that fundamentally determine the best achievable recommendation quality and
privacy. We provide more details about our results in Section 4.

2 Model and Problem Statement

2.1 Recommendation System Model

We now describe the model in more detail, abstracting away some of the com-
plications in the scenario above in order to focus on the fundamental trade-offs.

We consider an online collaborative recommendation system that contains
voters, clients and objects, and it repeatedly recommends objects to clients
based on voters’ opinions on objects. A voter/client either likes or dislikes an
object. Voters submit their opinions on objects to the system in the form of
votes, where a vote by voter i on object j indicates that voter i likes object
j; clients receive recommendations from the system and provide feedback to
the system which tells whether they like the recommended objects or not. Since
every client has his/her own personalized preferences, the system will serve each
client separately.

We now describe how the model operates for a particular client C. The
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system runs for T rounds. In each round t ∈ {1, . . . , T }, a set of m new candidate
objects arrives in the system, out of which the client C likes at least one of them.
We assume that m is a constant, and totally the system has mT objects over
all the T rounds. Let U denote the set of all the voters, and Bt denote the set
of candidate objects in the tth round. After Bt arrives, each voter i ∈ U votes
on one object in Bt; the system then recommends one object bt ∈ Bt to the
client C (based on the voters’ votes and the previous execution history), and C
responses the system with his/her feedback which tells whether he/she likes bt
or not. The system proceeds into the next round after that.

We measure the recommendation quality by loss, which is defined as the
number of objects that the algorithm recommends to the client C but C dislikes.

A client C is fully characterized by specifying C’s preferences on every object.
However, in a recommendation system, whether a client C likes an object j
or not is unknown until the system has recommended j to C and gotten the
feedback.

We denote the votes of all the voters in U by V〈U〉, and we call V〈U〉 the
voting pattern of U , or simply a voting pattern when U is clear from the context.
Given a client C and a voting pattern V〈U〉, a (randomized) recommendation
algorithm A maps the pair (C,V〈U〉) to a (random) sequence of objects in
B1× · · ·×BT . We call a particular sequence in B1× · · ·×BT a recommendation
sequence.

2.2 Differential Privacy in Recommendation Systems

Voters’ votes are assumed to be securely stored by the system, which are not
accessible from the public. Nevertheless, a curious client may still try to infer
voters’ votes by analyzing the recommendation results. In this paper, we adopt
differential privacy [17] as our definition of privacy. Roughly speaking, differen-
tial privacy protects privacy by ensuring that the outputs are “similar” for two
voting patterns V〈U〉 and V〈U ′〉 if they differ by one voter. Such a pair of voting
patterns are called adjacent voting patterns, and they are formally defined as:

Definition 1 (Adjacent Voting Patterns). Two voting patterns V〈U〉 and V〈U ′〉
are adjacent voting patterns iff i) |U △U ′| = 1, and ii) for any voter i ∈ U ∩ U ′

and in any round t ∈ {1, . . . , T }, i always votes on the same object in both V〈U〉
and V〈U ′〉.

Generalizing Definition 1, we say that two voting patterns V〈U〉 and V〈U ′〉
are k-step adjacent, if there exists a sequence of k + 1 voting patterns V〈U0〉 =
V〈U〉,V〈U1〉, . . . ,V〈Uk−1〉,V〈Uk〉 = V〈U

′〉 such that V〈Uℓ〉 and V〈Uℓ+1〉 are ad-
jacent for any ℓ = 0, . . . , k − 1.

Having defined adjacent voting patterns, we can then apply the standard
differential privacy in [17] to our setting:

Definition 2 (ǫ-Differential Privacy). A recommendation algorithm A preserves
ǫ-differential privacy if Pr[A(C,V〈U〉) ∈ S] ≤ eǫ Pr[A(C,V〈U ′〉) ∈ S] for any
client C, any pair of adjacent voting patterns V〈U〉,V〈U ′〉, and any subset S ⊆
B1 × · · · × BT , where the probabilities are over A’s coin flips.
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2.3 Attack Model, Power of the Adversary

As indicated by Definition 1 and Definition 2, we protect voters’ privacy against
the client. We do not need to protect the client’s privacy because voters receive
nothing from the system.

Our research goal is to study the theoretical hardness of the aforementioned
recommendation problem, therefore we assume that there is an adversary with
unlimited computational power who controls how the voters vote and which
objects the client likes. The adversary tries to compromise our algorithm’s
loss/privacy by feeding the algorithm with “bad” inputs. From the perspective
of game theory, our recommendation model can be viewed as a repeated game
between the algorithm, who chooses the objects to recommend, and the adver-
sary, who chooses the client’s preferences on objects and the voting pattern. For
our lower bounds, we consider an oblivious adversary that chooses the client’s
preferences on objects and the voting patterns in advance; for our upper bounds,
we consider an adaptive adversary whose choice in time t can depend on the
execution history prior to time t. By doing so, our results are only strengthened.

2.4 Notations

Next we introduce some notations that characterize the system. Some of them
are also the key parameters that determine the best achievable loss/privacy.

The client’s diversity of preferences. A client C’s diversity of preferences
DC is defined to be the number of rounds in which C likes more than one
objects.

The client’s peers. Inherently, a collaborative recommendation system can
achieve small loss only if some voters have similar preferences to the client. Let
the distance between a client C and a voter i be the total number of objects
that are voted on by i but are disliked by C. Given a radius parameter R ∈
{0, . . . , T }, we define a voter i to be a client C’s peer if their distance is within
R. Given a client C, a voting pattern V〈U〉 and a radius parameter R, we can
count the number of C’s peers in U , and we denote it by PC,V〈U〉,R.

Other notations. We define n to be an upper bound of |U| (i.e., the num-
ber of voters), D to be an upper bound of DC (i.e., the client’s diversity of
preferences), and P to be a lower bound of PC,V〈U〉,R (i.e., the number of the
client’s peers). The reader may wonder why these parameters are defined as
upper/lower bounds. The purpose is to give a succinct presentation. Take n
as an example: since differential privacy needs to consider two voting patterns
with different numbers of voters, if we define n as the number of voters, it would
be unclear which voting pattern we are referring to. The reader can verify that
by choosing the right directions for the parameters (e.g., we define n to be an
upper bound, and P to be a lower bound), our definition does not weaken our
results.

4



Table 1: List of key notations.
.

Notation Description

T the number of rounds

Bt the set of candidate objects in round t

m the constant m is the number of candidate objects in each round,
i.e., m = |Bt| and totally the system has mT objects

C a client

U a set of voters

V〈U〉 the voting pattern of U

n n is an upper bound of the number of voters

R R ∈ {0, . . . , T } is a parameter that defines the radius of the
client’s peer group, i.e., a voter is a client’s peer if their distance
is within R

PC,V〈U〉,R the number of the client C’s peers in the voting pattern V〈U〉,
given the radius parameter is R

P P is a lower bound of the number of the client’s peers

DC the client C’s diversity of preferences, i.e., the client C likes more
than one objects in DC rounds

D D ∈ {0, . . . , T } is an upper bound of the clients’ diversities of
preferences

In general, we consider a large system that consists of many voters, many
objects (over all the rounds), and runs for a long time. That is, n and T can
be very large. In this paper, we also impose a (quite loose) requirement that
n = O(poly(T )), i.e., n is not super large compared to T .

In reality, a client shall find more peers as more voters join the system.
Otherwise, the client has an “esoteric tastes” and it is inherently hard for any
collaborative system to help him/her. Thus, in this paper, we consider the case
that P ≥ 6m, i.e., the client has at least a constant number of peers.

Table 1 summarizes the key notations in this paper.

2.5 Loss/Privacy Goal

In this paper, we consider the worst-case expected loss of the algorithm, that is,
we aim to bound the algorithm’s expected loss for any client C and any voting
pattern V〈U〉 such that |U| ≤ n, DC ≤ D and PC,V〈U〉,R ≥ P . Notice that O(T )
loss can be trivially achieved by ignoring voters’ votes and recommending objects
randomly. However, such an algorithm is useless, and hence we consider the
more interesting case when sub-linear loss (in terms of T ) is to be guaranteed.
It can be shown that the worst-case expected loss is Ω(R) for any algorithm
(Theorem 6). Therefore, sub-linear loss is achievable only when R is sub-linear.
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In this paper, we focus on the case when R = O(T η) for some constant η < 1.1

For the privacy, we aim to preserve ǫ-differential privacy. We study the best
achievable ǫ-differential privacy for any given target loss.

3 Related Work

Recommendation Systems and Online Learning. The research on rec-
ommendation systems has a long history [1, 38]. A classic recommendation
model is the offline matrix-based model, in which the user-object relation is
represented by a matrix. In this paper, we consider a very different online
recommendation model. From the theoretical perspective, our model can be
viewed as a variant of the “Prediction with Expert Advice” (PEA) problem in
online learning [9]. Such an approach that models the recommendation systems
as online learning problems has been adopted by other researchers as well, e.g.,
in [2, 29, 31, 35, 41].

Differential Privacy. There has been abundant research on differential pri-
vacy [14–16,20]. Much of the early research focused on answering a single query
on a dataset. Progress on answering multiple queries with non-trivial errors was
made later on, for both offline settings [4,19,23,36] (where the input is available
in advance), and online settings [5, 10, 11, 18, 24, 27, 39] (where the input con-
tinuously comes). We will introduce the work on differentially private online
learning in [18, 24, 39] with more details soon after, as they are most related to
this paper.

Protecting Privacy in Recommendation Systems. People are well aware
of the privacy risks in collaborative recommendation systems. Two recent at-
tacks were demonstrated in [32] (which de-anonymized a dataset published by
Netflix) and [6] (which inferred users’ historical data by combining passive ob-
servation of a recommendation system with auxiliary information).

Many of the existing privacy-preserving recommendation systems adopted pri-
vacy notions other than differential privacy (e.g., [3, 7, 8, 33, 34, 37]). For stud-
ies on differentially private recommendation systems, prior to our paper, most
of them were for offline matrix-based models. Some experimentally studied
the empirical trade-offs between loss and privacy (e.g., [13, 30, 40]); the oth-
ers focused on techniques that manipulate matrices in privacy-preserving ways
(e.g., [12, 21, 22, 26]).

Differentially Private Online Learning. This paper is most related to
differentially private online learning, as our recommendation model is a variant
of the PEA problem in online learning. Currently, only a limited number of

1Technically, the assumptions that n = O(polylog(T )), P ≥ 6m and R = O(T η) are only
for showing the near-optimality of our lower bound. Our lower bound itself remains to hold
without these assumptions.
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studies have been done on this area [18, 24, 39]. In [18], Dwork et al. proposed
a differentially private algorithm for the PEA problem by plugging privacy-
preserving online counters into “Follow the Perturbed Leader” algorithm [25].
In [24] and [39], differential privacy was considered under a more general online
learning model called “Online Convex Programming.”

Despite the similarity between our recommendation model and the learning
models in [18, 24, 39], there is an important difference. Since their research is
not for recommendation systems, they considered somewhat different notions of
privacy from ours. Roughly speaking, if interpreting their models as recommen-
dation problems, then their privacy goal is to ensure that each voter is “followed”
with similar probabilities when running the algorithm with two adjacent voting
patterns. Such a guarantee is not sufficient for a recommendation system. For
example, an algorithm that always “follows” voter Alice is perfectly private in
terms of their privacy definition, but completely discloses Alice’s private votes.2

Besides the difference in privacy definition, we provide both lower bound and
upper bound results, while [18, 24, 39] only have upper bound results.

4 Our Results and Contributions

Main results. Our first result is a lower bound on the best achievable privacy:

Theorem 1. For any recommendation algorithm that guarantees L = O(T β)
worst-case expected loss (β < 1 is a constant) and preserves ǫ-differential pri-
vacy, ǫ = Ω( 1

P (D + R + log T
L )) = Ω( 1

P (D + R + logT )), even for an oblivious
adversary.

Our second result is a near-optimal algorithm (the p-REC algorithm in Sec-
tion 8.2):

Theorem 2. The p-REC algorithm guarantees O((R + 1) log n
P ) worst-case

expected loss, and it preserves O( 1
P (D + R + 1) log T

R+1 )-differential privacy,
even for an adaptive adversary.

It can be shown that the worst-case expected loss is Ω(R + log n
P ) even

for algorithms with no privacy guarantee (Theorem 6). Thus, p-REC’s worst-
case expected loss is within a logarithmic factor to the optimal. Recall that
R = O(T η) for a constant η < 1 and logn = O(log T ), hence p-REC’s worst-
case expected loss is within O(T β) for some constant β < 1 too. Then, by
Theorem 1, p-REC’s privacy is also within a logarithmic factor to the optimal.

Discussion of our results. Theorem 1 shows that a minimal amount of
“privacy leakage” is inevitable, even for the fairly weak O(T β) target loss.

Moreover, unlike many other systems in which the utility downgrades linear
to the privacy parameter ǫ, the loss in an online recommendation system is much

2On the other hand, our privacy definition does not imply their definitions either. Therefore
these two types of privacy models are incomparable.
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more sensitive to ǫ: according to Theorem 2, we can achieve near-optimal loss
for an ǫ = O( 1

P (D + R + 1) log T
R+1 ); meanwhile, only trivial loss is achievable

for just a slightly smaller ǫ = o( 1
P (D+R+logT )). In other words, the trade-offs

between loss and privacy are rather little — the best achievable ǫ is essentially
the same (up to a logarithmic factor) for all the algorithms with O(T β) worst-
case expected loss.3 For this reason, instead of designing an algorithm that has
a tunable privacy parameter ǫ, we directly propose the p-REC algorithm that
simultaneously guarantees both near-optimal loss and privacy.

From our results, we identify the key parameters D, P and R that determine
the best achievable loss and/or privacy.

The parameter R characterizes the correlation between the client and the
voters, and it is not surprised that the best achievable loss is inherently lim-
ited by R, because a basic assumption for any collaborative system is the exis-
tence of correlation in the data (e.g., the low-rank assumption in matrix-based
recommendation systems), and the system works by exploring/exploiting the
correlation.

We notice that a larger P gives better privacy. This is consistent with our
intuition, as an individual’s privacy is obtained by hiding oneself in a population.

We also notice that the best achievable privacy linearly depends on the
client’s diversity of preferences D and the radius parameter R. The parameter D
looks to be unnatural at the first sight, and no prior research on recommendation
systems has studied it. The reason might be that most of the prior research
focused on the loss, and D has no impact on the loss (the loss should only be
smaller if a client likes more objects). Nevertheless, in this paper, we discover
that D is one of the fundamental parameters that determine the best achievable
privacy. We provide an intuitive explanation of ǫ’s linear dependence on D and
R with an illustrative example in Section 8.1.

5 Preliminaries

Let P and Q be two distributions over sample space Ω. The relative entropy

between P and Q is defined as
∑

ω∈Ω P(ω) ln
P(ω)
Q(ω) , where P(ω) and Q(ω) is

the probability of ω in P and Q, respectively. We adopt the conventions that
0 log 0

0 = 0, 0 log 0
x = 0 for any x > 0 and x log x

0 =∞ for any x > 0. It is well
known that relative entropy is always non-negative for any distributions P and
Q [28].

In this paper, we often simultaneously discuss two executions A(C,V〈U〉)
and A(C,V〈U ′〉) for some algorithm A, some client C and two voting patterns
V〈U〉 and V〈U ′〉. As a notation convention, we will use Pr[·] and Pr′[·] to denote
the probability of some event in the execution of A(C,V〈U〉) and A(C,V〈U ′〉),
respectively. For any recommendation sequence b = (b1, . . . , bT ) ∈ B1×· · ·×BT

3This statement actually holds for all the algorithms with o(T ) loss. In Theorem 1, we
choose O(Tβ) target loss to get a clean expression for the lower bound on ǫ, and a similar
(but messier) lower bound on ǫ holds for o(T ) target loss too.
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and any round t, we define the random variables Et(b) = ln Pr[bt|b1,...,bt−1]
Pr′[bt|b1,...,bt−1]

and

E(b) = ln Pr[b]
Pr′[b] . It then follows that E(b) =

∑T
t=1 Et(b). We also define random

variable Lt to be the loss of execution A(C,V〈U〉) in the tth round.
Finally, we list some useful properties of the following “truncated-and-shifted

exponential” function

φ(x) =

{

0 if x ≤ ρ,

eλx − eλρ otherwise,

where −∞ < ρ <∞ and λ > 0. These properties will be useful when analyzing
our algorithms.

Lemma 3. φ(x) ≤ eλ|x−x′|φ(x′) + (eλ|x−x′| − 1)eλρ for any reals x, x′.

Proof. If x ≤ x′, since φ(x) is non-decreasing, φ(x) ≤ φ(x′) and this lemma
holds trivially. When x > x′, we have two cases:

• Case 1: x′ ≤ ρ. In this case, φ(x′) = 0 and

φ(x) = φ(x′ + (x− x′))

≤ φ(ρ+ (x − x′))

= (eλ(x−x′) − 1)eλρ

= eλ(x−x′)φ(x′) + (eλ(x−x′) − 1)eλρ;

• Case 2: x′ > ρ. In this case, we have

φ(x) + eλρ

φ(x′) + eλρ
=

eλx

eλx′ = eλ(x−x′).

We get the desired result by rearranging terms.

This finishes the proof of Lemma 3.

Lemma 4. φ(x)
φ(x′) ≤ e2λ(x−x′) for any x ≥ x′ ≥ ρ+ ln 2

λ .

Proof. Given x ≥ x′ > ρ, it follows that

eλx − eλρ

eλx′ − eλρ
≤ e2λ(x−x′)

⇔ eλx − eλρ ≤ e2λ(x−x′)(eλx
′

− eλρ)

⇔ eλx
′

(e2λ(x−x′) − eλ(x−x′)) ≥ eλρ(e2λ(x−x′) − 1)

⇐ eλx
′

eλ(x−x′) ≥ eλρ(eλ(x−x′) + 1)

⇔
eλx

′

eλρ
≥

eλ(x−x′) + 1

eλ(x−x′)

⇐
eλx

′

eλρ
≥ 2

9



⇔ x′ ≥ ρ+
ln 2

λ
.

This finishes the proof of Lemma 4.

Lemma 5. Let θ1, . . . , θn be non-negative reals. Then

n
∑

i=1

φ(xi + θi) + φ(xn+1) ≤

n
∑

i=1

φ(xi) + φ

(

xn+1 +

n
∑

i=1

θi

)

for any reals x1 ≤ · · · ≤ xn ≤ xn+1.

Proof. We prove this lemma by induction. When n = 1, it is easy to verify that
φ(x1 + θ1) + φ(x2) ≤ φ(x1) + φ(x2 + θ1) if x1 ≤ x2. Suppose this lemma holds
for all n = 1, . . . , k. When n = k + 1, we have

k+1
∑

i=1

φ(xi + θi) + φ(xk+2)

=

k
∑

i=1

φ(xi + θi) + φ(xk+1 + θk+1) + φ(xk+2)

≤

k
∑

i=1

φ(xi) + φ(xk+1 + θk+1) + φ

(

xk+2 +

k
∑

i=1

θi

)

(by induction hypothesis)

≤

k+1
∑

i=1

φ(xi) + φ

(

xk+2 +

k+1
∑

i=1

θi

)

.

(by induction hypothesis, since xk+2 +
∑k

i=1 θi ≥ xk+1)

This finishes the induction step.

6 A Lower Bound on the Worst-case Expected

Loss

Before considering privacy, let us first look at the best achievable loss. We have
the following lower bound on the worst-case expected loss, even for algorithms
providing no privacy guarantee:

Theorem 6. The worst-case expected loss of any recommendation algorithm
is Ω(R + log n

P ), even for an algorithm providing no privacy guarantee and an
oblivious adversary.

Proof of Theorem 6. In [41], Yu et al. have shown that the worst-case expected
loss is Ω(log n) for the case of P = 1 (Theorem 6 in [41]). A direct adap-
tion of their proof shows that the worst-case expected loss is at least 1

2 (m −
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1)⌊ log (n/P )
logm ⌋ = Ω(log n

P ) for any P ≥ 1. In the remaining parts of this proof, we

show that the worst-case expected loss is Ω(R).
We will show this by constructing a client with random preferences. In each

of the first R rounds, we independently and uniformly at random choose one
object. We let the client like this object, and we let he/she dislike the other
objects. In each of the remaining T − R rounds, there is no randomness, the
client always likes the object with the smallest index in that round.

There is a fixed voting pattern V〈U〉 containing P voters. In each round, all
the P voters always vote on the object with the smallest index in that round.
By doing so, we ensure that all these P voters are always peers of the client
regardless of the instantiation of the client’s random preferences.

One easily sees that the expected loss is at least (1 − 1
m )R for any recom-

mendation algorithm A when running with the random client and the voting
pattern V〈U〉 (over both the client’s coin flips and A’s coin flips), because the
expected loss in each of the first R rounds is 1 − 1

m , no matter what A does.
Therefore, there must exist one instantiation of preferences for the client such
that the expected loss is at least (1− 1

m )R. This finishes the proof.

7 The Special Setting where D = R = 0

Now let us consider differential privacy in recommendation systems. In order
to better explain our ideas, we start by discussing the simple (yet non-trivial)
setting where D = R = 0. That is, the client likes exactly one object in every
round, and the client’s peers never vote on any object that the client dislikes.
We discuss the general setting where D +R ≥ 0 in the next section.

7.1 Lower Bound

When D = R = 0, we have the following lower bound on the best achievable
privacy.

Theorem 7. For any recommendation algorithm that guarantees L = o(T )
worst-case expected loss and preserves ǫ-differential privacy, if D = R = 0, then
ǫ = Ω( 1

P log T
L ), even for an oblivious adversary.

Theorem 7 directly follows from the following Lemma 8, by plugging L worst-
case expected loss into it:

Lemma 8. If D = R = 0, then the worst-case expected loss is at least 1
2Te

−Pǫ

for any recommendation algorithm that preserves ǫ-differential privacy, even for
an oblivious adversary.

Proof. In this proof, we consider a particular setup in which there are two
objects αt and βt in each round t. Given a client C, let ṼC denote the voting
pattern which contains only P voters who are all C’s peers. We will construct
a client C∗ for any recommendation algorithm A, such that the expected loss
of A(C∗, ṼC∗) is at least 1

2Te
−Pǫ.
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First consider a particular round t, we have the following claim:

Claim 1. If two clients Alice and Bob have the same preferences in all but
the tth round, then one of A(Alice, ṼAlice) and A(Bob, ṼBob) has at least 1

2e
−Pǫ

expected loss in the tth round.

To prove this claim, assume that Alice likes αt but Bob likes βt. We construct
a chain of 2P + 1 voting patterns:

V
(1)
A , . . . ,V

(P )
A ,V ,V

(P )
B , . . . ,V

(1)
B .

The voting in the tth round of these voting patterns is as follows: in the middle
voting pattern V , there are P voters voting on αt (who are Alice’s peers) and
another P voters voting on βt (who are Bob’s peers). To get voting pattern

V
(P )
A , we remove one of Bob’s peers from V . We keep on doing this until we get

V
(1)
A , which contains only Alice’s P peers. Similarly, we construct V

(P )
B , . . . ,V

(1)
B

by repeatedly removing Alice’s peers. The voting in all the other T − 1 rounds
is simple: in every voting pattern, all the voters vote on the (common) object
that is liked by both Alice and Bob in every round. The reader can verify that

V
(1)
A = ṼAlice and V

(1)
B = ṼBob.

We will use the middle voting pattern V as a bridge to relate the execu-

tion A(Alice,V
(1)
A ) with the execution A(Bob,V

(1)
B ). Since Alice and Bob have

the same preferences in the first t − 1 rounds, the executions A(Alice,V) and
A(Bob,V) have the same distribution of recommending objects in the tth round.
Denote the common probability that the object βt is recommended in the tth
round by p.

Let pA be the probability that βt is recommended in the tth round of the ex-

ecution A(Alice,V
(1)
A ). Notice that pA is also the expected loss of A(Alice,V

(1)
A )

in the tth round. Since V
(1)
A and V are P -step adjacent voting patterns, we have

pA ≥ p · e−Pǫ. Similarly, let pB be the probability that αt is recommended in

the tth round of the execution A(Bob,V
(1)
B ), then pB is the expected loss of

A(Bob,V
(1)
B ) in the tth round and pB ≥ (1− p) · e−Pǫ. In summary, we always

have max{pA, pB} ≥ max{p, 1− p} · e−Pǫ ≥ 1
2e

−Pǫ and therefore at least one of
Alice and Bob incurs at least 1

2e
−Pǫ expected loss in the tth round. This proves

our claim.
We now inductively construct the client C∗ who incurs 1

2e
−Pǫ expected loss

in every round when running with ṼC∗ . By the above claim, there exists a client
C1 who incurs at least 1

2e
−Pǫ expected loss in the first round when running with

ṼC1
. This finishes the base case.
Assume Ck is a client who incurs at least 1

2e
−Pǫ expected loss in every one

of the first k rounds when running with ṼCk
. We construct another client C′

k

who has the same preferences with Ck in all but the (k+1)th round. Then the
expected loss in every one of the first k rounds is the same for both A(Ck, ṼCk

)
and A(C′

k, ṼC′
k
) (because the voting in the first k rounds is the same in both

ṼCk
and ṼC′

k
), and by the above claim, one of them has at least 1

2e
−Pǫ expected

12



loss in the (k + 1)th round. In other words, one of A(Ck, ṼCk
) and A(C′

k, ṼC′
k
)

has at least 1
2e

−Pǫ expected loss in every one of the first k + 1 rounds. This
finishes the induction step.

7.2 Algorithm

We propose the following Algorithm 1 for the simple setting where D = R = 0.
As we will see, it is a special case of the general p-REC algorithm in Section 8.2.
Therefore, we call it the p-RECsim algorithm (“sim” is short for “simple”).

Input : A client C, a voting pattern V〈U〉
Output : Recommend an object from Bt to client C in each round t
Initialization: γ ← m

3T−1 , λ← 2m lnT , ρ← 1
2m , weight[i]← 1 for each

i ∈ U

Procedure Main()

foreach round t = 1, . . . , T do
obj← RecommendByWeight(weight[ ]);
Recommend object obj to the client C;
feedback← the client C’s feedback on object obj;
UpdateWeight(weight[ ], obj, feedback);

Procedure RecommendByWeight(weight[ ])
foreach object j ∈ Bt do

xj,t ←

∑
i∈Uj,t

weight[i]
∑

i∈U
weight[i] , where Uj,t is the set of voters who vote on

object j in round t;

Independently draw a Bernoulli random variable Zt with
Pr[Zt = 1] = γ;
if Zt = 1 then

Independently draw an object obj from Bt uniformly at random;
else

Independently draw an object obj from Bt according to the
following distribution: each object j ∈ Bt is drawn with
probability proportional to φ(xj,t), where

φ(x) =

{

0 if x ≤ ρ,

eλx − eλρ otherwise;

return obj;

Procedure UpdateWeight(weight[ ], obj, feedback)

if feedback = “dislike” then
weight[i]← 0 for every voter i who votes on object obj;

else
weight[i]← 0 for every voter i who does not vote on object obj;

Algorithm 1: The p-RECsim algorithm.

13



The p-RECsim algorithm maintains a weight value weight[i] for each voter i,
and it recommends objects according to voters’ weight in each round by invoking
the procedure RecommendByWeight(). When it receives the client’s feedback, it
invokes the procedure UpdateWeight() to update voters’ weight. In p-RECsim,
each voter’s weight is either 1 or 0. A voter with 0 weight has no impact on the
algorithm’s output, and once a voter’s weight is set to 0, it will never be reset
to 1. Therefore, we can think of that UpdateWeight() works by “kicking out”
voters from the system. We call the voters who have not been kicked out (i.e.,
those who have non-zero weight) surviving voters.

The p-RECsim algorithm shares a similar structure to the classic Weighted
Average algorithm for the PEA problem [9], as they both introduce weight
to voters and output according to the weight. Our core contribution is the
dedicated probability of recommending objects. In each round t, p-RECsim

recommends object j with probability γ · 1
m + (1− γ) ·

φ(xj,t)∑
k∈Bt

φ(xk,t)
, where xj,t

is the fraction of surviving voters voting on object j in round t. We have:

Theorem 9. If D = R = 0, then the p-RECsim algorithm guarantees O(log n
P )

worst-case expected loss and it preserves O( 1
P logT )-differential privacy, even

for an adaptive adversary.

According to Theorem 6, p-RECsim’s loss is within a constant factor to the
optimal. Then by Theorem 7, p-RECsim’s ǫ is also within a constant factor
to the optimal ǫ among all the algorithms that guarantee O(T β) worst-case
expected loss.

Loss analysis of the p-RECsim algorithm. In the remaining parts of this
section, we prove Theorem 9. First, we analyze p-RECsim’s loss:

Theorem 10. If D = R = 0, then the p-RECsim algorithm guarantees O(log n
P )

worst-case expected loss, even for an adaptive adversary.

Proof. First consider all the rounds with Zt = 0. In these rounds, p-RECsim

kicks out at least ρ fraction of surviving voters whenever the client incurs a
loss, because only the objects voted by at least ρ fraction of surviving voters
can be recommended. Since the number of surviving voters is initially at most
n and always at least P , it follows that the number of loss rounds is at most
log 1

1−ρ

n
P ≤ 2m ln n

P . For those rounds with Zt = 1, since there are γT such

rounds on expectation, they cause at most γT ≤ m
2 additional expected loss.

A high probability result can also be derived by applying Chernoff’s bound
on the random variables Zt’s.

Privacy analysis of the p-RECsim algorithm. Next, we analyze p-RECsim’s
privacy. We aim to show that

Theorem 11. If D = R = 0, then the p-RECsim algorithm preserves O( 1
P logT )-

differential privacy, even for an adaptive adversary.
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To show Theorem 11, consider the executions p-RECsim(C,V〈U〉) and p-
RECsim(C,V〈U ′〉), where C is any client and V〈U〉 and V〈U ′〉 are any pair of
adjacent voting patterns (U contains one more voter than U ′). To show that
p-RECsim preserves O( 1

P logT )-differential privacy, it is sufficient to show that
|E(b)| = O( 1

P logT ) for any recommendation sequence b = (b1, . . . , bT ). From
now on, we will consider a fixed b, a fixed C and a fixed pair of V〈U〉 and V〈U ′〉.

Given the recommendation sequence b = (b1, . . . , bT ), let

Wt(b) =
∑

i∈U

weight[i]

be the number of surviving voters at the beginning of round t in execution
p-RECsim(C,V〈U〉), conditioned on that the recommendations in the first t −
1 rounds are b1, . . . , bt−1. Since p-RECsim never kicks out the client’s peers,
Wt(b) ≥ P ≥ 6m.

First, we upper-bound the “privacy leakage” in each single round:

Lemma 12. For any round t, |Et(b)| ≤ 3λ · 1
Wt(b)

.

Lemma 12 upper-bounds the “privacy leakage” in any single round. This
lemma would be easy to prove if we were to recommend object j in round t with
probability ∝ exp(λxj,t), because if there were Wt(b) surviving voters, then the
values of xj,t could only differ by 1

Wt(b)
in the executions of p-RECsim(C,V〈U〉)

and p-RECsim(C,V〈U ′〉). By some relatively straightforward (but rather te-
dious) calculations, it can be shown that Lemma 12 is also true if we recom-

mend object j in round t with probability γ · 1m +(1−γ) ·
φ(xj,t)∑

k∈Bt
φ(xk,t)

. Roughly

speaking, this is because that the distortion γ is small, and φ(x) ≈ eλx.

Proof of Lemma 12. Recall that U contains one more voter than U ′. If the
extra voter in U has zero weight in the tth round (i.e., the extra voter has been
kicked out), then we have Pr[bt|b1, . . . , bt−1] = Pr′[bt|b1, . . . , bt−1] and the proof
is done. In the remaining parts of this proof, we assume that the extra voter
has 1 weight.

Consider the tth round. Index the m candidate objects in Bt by {1, . . . ,m}.
We use xj to denote the fraction of surviving voters voting on the jth object
in the execution p-RECsim(C,V〈U〉), where j = 1, . . . ,m. Similarly, we use
x′
j to denote the corresponding fraction in the execution p-RECsim(C,V〈U ′〉).

Since there are Wt(b) surviving voters in the execution p-RECsim(C,V〈U〉), the
fractions xj and x′

j can differ by at most 1
Wt(b)

, i.e., |xj − x′
j | ≤

1
Wt(b)

for any
j = 1, . . . ,m.

Suppose the index of the recommended object bt is j∗, according to the
p-RECsim algorithm,

Pr[bt|b1, . . . , bt−1] = γ ·
1

m
+ (1 − γ) ·

φ(xj∗ )
∑m

j=1 φ(xj)

and

Pr ′[bt|b1, . . . , bt−1] = γ ·
1

m
+ (1 − γ) ·

φ(x′
j∗ )

∑m
j=1 φ(x

′
j)
.
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For simplicity, let us write Wt(b) as Wt hereafter in this proof. Our goal is to

show that e−3λ/Wt ≤ Pr[bt|b1,...,bt−1]
Pr′[bt|b1,...,bt−1]

≤ e3λ/Wt , which is equivalent to







φ(xj∗ )∑
m
j=1

φ(xj)
≤ e3λ/Wt

φ(x′

j∗ )∑
m
j=1

φ(x′
j)

+ (e3λ/Wt−1)γ
m(1−γ) ,

φ(x′

j∗ )∑m
j=1

φ(x′
j)
≤ e3λ/Wt

φ(xj∗ )∑m
j=1

φ(xj)
+ (e3λ/Wt−1)γ

m(1−γ) .
(1)

Recall that |xj∗ − x′
j∗ | ≤

1
Wt

, by Lemma 3, we have

φ(xj∗ ) ≤ eλ/Wtφ(x′
j∗ ) + (eλ/Wt − 1)eλρ.

We also have
∑m

j=1
φ(xj)∑

m
j=1

φ(x′
j)
≥ e−2λ/Wt (see below, Lemma 13). It then follows that

φ(xj∗ )
∑m

j=1 φ(xj)
≤

eλ/Wtφ(x′
j∗ ) + (eλ/Wt − 1)eλρ
∑m

j=1 φ(xj)

=
eλ/Wtφ(x′

j∗ )
∑m

j=1 φ(xj)
+

(eλ/Wt − 1)eλρ
∑m

j=1 φ(xj)

≤
eλ/Wtφ(x′

j∗ )

e−2λ/Wt
∑m

j=1 φ(x
′
j)

+
(eλ/Wt − 1)eλρ
∑m

j=1 φ(xj)

≤ e3λ/Wt
φ(x′

j∗ )
∑m

j=1 φ(x
′
j)

+
(eλ/Wt − 1)eλρ

φ( 1
m )

.

Notice in the last step, we use the fact that
∑m

j=1 φ(xj) ≥ φ( 1
m ) because there

always exists one j with xj ≥
1
m . One can verify that (eλ/Wt−1)eλρ

φ( 1
m )

≤ (e3λ/Wt−1)γ
m(1−γ)

by our choice of γ and λ, hence we have proved the first inequality of (1). We
can show the second inequality of (1) in a completely symmetric way and prove
this lemma.

In the proof of Lemma 12, we use the following lemma:

Lemma 13. e−2λ/Wt ≤
∑m

j=1
φ(xj)

∑m
j=1

φ(x′
j)
≤ e2λ/Wt (xj’s and x′

j’s are defined in the

proof of Lemma 12).

Proof. Suppose the extra voter votes on the object with index k. We then have
xk > x′

k, and xj < x′
j for all the other j 6= k. Since φ(x) is non-decreasing, it

then follows that φ(xk) ≥ φ(x′
k), and φ(xj) ≤ φ(x′

j) for all the other j 6= k.
Let θj = |xj − x′

j |, we have

∑

j 6=k

θj = θk ≤
1

Wt
≤

1

P
≤

1

6m
.

Let ℓ = argmaxj{x
′
1, . . . , x

′
j , . . . , x

′
m}, then x′

ℓ ≥
1
m and xℓ ≥ x′

ℓ−θl ≥ x′
ℓ−

1
6m ≥

5
6 ·

1
m . Depending on whether the extra voter votes on the object with index ℓ

or not, we have two cases:
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• Case 1: k = ℓ. Partition all the m objects into two disjoint subsets: {ℓ}
and A = {1, . . . ,m} \ {ℓ}. We have that φ(xℓ) ≥ φ(x′

ℓ) (because ℓ = k)
and

∑

j∈A φ(xj) ≤
∑

j∈A φ(x′
j) (because ∀j ∈ A : φ(xj) ≤ φ(x′

j)). We
then have

∑m
j=1 φ(xj)

∑m
j=1 φ(x

′
j)

=
φ(xℓ) +

∑

j∈A φ(xj)

φ(x′
ℓ) +

∑

j∈A φ(x′
j)

≤
φ(xℓ)

φ(x′
ℓ)

≤ e2λ/Wt . (by Lemma 4)

For the other direction, it follows that

∑m
j=1 φ(xj)

∑m
j=1 φ(x

′
j)

=
φ(xℓ) +

∑

j∈A φ(xj)

φ(x′
ℓ) +

∑

j∈A φ(x′
j)

=
φ(xℓ) +

∑

j∈A φ(xj)

φ(x′
ℓ) +

∑

j∈A φ(xj + θj)

≥
φ(xℓ) +

∑

j∈A φ(xj)

φ(x′
ℓ +

∑

j∈A θj) +
∑

j∈A φ(xj)
(by Lemma 5)

=

∑

j∈A φ(xj) + φ(xℓ)
∑

j∈A φ(xj) + φ(xℓ)
(since

∑

j∈A θj = θℓ = xℓ − x′
ℓ)

= 1.

• Case 2: k 6= ℓ. Partition all the m objects into three disjoint subsets: {k},
{ℓ} and B = {1, . . . ,m} \ {k, ℓ}. Since φ(xj) ≤ φ(x′

j) for any j ∈ B, we
have

∑

j∈B φ(xj) ≤
∑

j∈B φ(x′
j). It then follows that

∑m
j=1 φ(xj)

∑m
j=1 φ(x

′
j)

=
φ(xk) + φ(xℓ) +

∑

j∈B φ(xj)

φ(x′
k) + φ(x′

ℓ) +
∑

j∈B φ(x′
j)

≤

{

1 if φ(xk)+φ(xℓ)
φ(x′

k)+φ(x′
ℓ)
≤ 1,

φ(xk)+φ(xℓ)
φ(x′

k)+φ(x′
ℓ)

if φ(xk)+φ(xℓ)
φ(x′

k)+φ(x′
ℓ)

> 1.

Thus, to upper-bound
∑m

j=1
φ(xj)∑

m
j=1

φ(x′
j)

, it is sufficient to show an upper bound

for φ(xk)+φ(xℓ)
φ(x′

k)+φ(x′
ℓ)

. There are two subcases to consider:

– x′
k ≤ xℓ. By Lemma 5, it follows that

φ(xk) + φ(xℓ)

φ(x′
k) + φ(x′

ℓ)
=

φ(x′
k + θk) + φ(xℓ)

φ(x′
k) + φ(x′

ℓ)

≤
φ(x′

k) + φ(xℓ + θk)

φ(x′
k) + φ(x′

ℓ)
. (2)
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Notice that 0 ≤ (xℓ + θk) − x′
ℓ =

∑

j∈B θj ≤
1
Wt

, and x′
ℓ ≥ ρ + ln 2

λ ,
according to Lemma 4, we have

1 ≤
φ(xℓ + θk)

φ(x′
ℓ)

≤ e2λ((xℓ+θk)−x′
ℓ) ≤ e2λ/Wt .

Substitute this to (2), we get
∑m

j=1
φ(xj)

∑
m
j=1

φ(x′
j)
≤ e2λ/Wt .

– x′
k > xℓ. In this case, since φ(xk) ≥ φ(x′

k) ≥ φ(xℓ), φ(x
′
k) ≤ φ(x′

ℓ),
we have

φ(xk) + φ(xℓ)

φ(x′
k) + φ(x′

ℓ)
≤

φ(xk) + φ(xk)

φ(x′
k) + φ(x′

k)
=

φ(xk)

φ(x′
k)

. (3)

Notice that x′
k > xℓ ≥

5
6 ·

1
m ≥ ρ+ ln 2

λ , by Lemma 4, we have

φ(xk)

φ(x′
k)
≤ e2λ(xk−x′

k) ≤ e2λ/Wt .

Substitute this to (3), we get
∑m

j=1
φ(xj)

∑m
j=1

φ(x′
j)
≤ e2λ/Wt .

Now we have shown one direction of the desired inequality in Case 2, for
the other direction, it follows that

∑m
j=1 φ(xj)

∑m
j=1 φ(x

′
j)

=
φ(xk) + φ(xℓ) +

∑

j∈B φ(xj)

φ(x′
k) + φ(x′

ℓ) +
∑

j∈B φ(x′
j)

≥
φ(xℓ) +

∑

j∈B φ(xj)

φ(x′
ℓ) +

∑

j∈B φ(x′
j)

(since φ(xk) ≥ φ(x′
k))

=
φ(xℓ) +

∑

j∈B φ(xj)

φ(x′
ℓ) +

∑

j∈B φ(xj + θj)

≥
φ(xℓ) +

∑

j∈B φ(xj)

φ(x′
ℓ +

∑

j∈B θj) +
∑

j∈B φ(xj)
. (4)

The last step is due to Lemma 5. Notice that 0 ≤ (x′
ℓ +

∑

j∈B θj)− xℓ =
∑

j∈B∪{ℓ} θj = θk ≤
1
Wt

, and x′
ℓ ≥ ρ + ln 2

λ , according to Lemma 4, we
have

1 ≤
φ(x′

ℓ +
∑

j∈B θj)

φ(xℓ)
≤ e2λ/Wt .

Substitute this to (4), we get
∑m

j=1
φ(xj)∑

m
j=1

φ(x′
j)
≥ e−2λ/Wt .

The proof of Lemma 13 is done because we have shown e−2λ/Wt ≤
∑m

j=1
φ(xj)

∑m
j=1

φ(x′
j)
≤

e2λ/Wt in both Case 1 and Case 2.

Next, we show that a constant fraction of surviving voters are kicked out
whenever there is non-zero “privacy leakage:”
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Lemma 14. For any round t, if |Et(b)| 6= 0, then Wt+1(b) ≤Wt(b) · (1−
1
3m ).

Proof. Notice that |Et(b)| 6= 0 iff Pr[bt|b1, . . . , bt−1] 6= Pr ′[bt|b1, . . . , bt−1]. Let
x and x′ be the fraction of surviving voters voting on the recommended object
bt in execution p-RECsim(C,V〈U〉) and p-RECsim(C,V〈U ′〉), respectively. Since
there are Wt(b) surviving voters, |x− x′| ≤ 1

Wt(b)
≤ 1

P ≤
1
6m .

We claim that x > 1
3m . Assume for contradiction that x ≤ 1

3m . Since
|x− x′| ≤ 1

6m , both x and x′ will be no larger than 1
3m + 1

6m = 1
2m = ρ. Notice

that φ(ζ) = 0 for any variable ζ ≤ ρ, it then follows that φ(x) = φ(x′) = 0 and
Pr[bt|b1, . . . , bt−1] = Pr′[bt|b1, . . . , bt−1] = γ · 1

m , contradiction.
If the clients dislikes the recommended object bt, by p-RECsim’s rule of

updating weight, x > 1
3m fraction of surviving voters will be kicked out.

If the clients likes bt, then there must exist another object ξ ∈ Bt which is
different from bt, such that Pr[ξ|b1, . . . , bt−1] 6= Pr′[ξ|b1, . . . , bt−1]. Otherwise, if
all the other objects are recommended with the same probability in executions
p-RECsim(C,V〈U〉) and p-RECsim(C,V〈U ′〉), so will be bt, contradiction. By
similar arguments, there are at least 1

3m fraction of surviving voters voting
on the object ξ in both p-RECsim(C,V〈U〉) and p-RECsim(C,V〈U ′〉). Since p-
RECsim kicks out all the voters who do not vote on bt (including those who vote
on ξ), again we get the desired result.

Lemma 12 states that |Et(b)| is O( λ
Wt(b)

) = O( 1
P logT ). Lemma 14 implies

that there can be at most O(log n
P ) rounds with |Et(b)| 6= 0. A combination of

these two lemmas immediately shows that overall we have O( 1
P log T · log n

P )-
differential privacy. With a bit more careful analysis, we can remove the extra
log n

P factor and prove Theorem 11:

Proof of Theorem 11. Let t1, . . . , tK be the rounds in which |Eti(b)| 6= 0, we
have

|E(b)| =

∣

∣

∣

∣

∣

T
∑

t=1

Et(b)

∣

∣

∣

∣

∣

≤

T
∑

t=1

|Et(b)| =

K
∑

i=1

|Eti(b)| ≤ 3λ

K
∑

i=1

1

Wti(b)
.

By Lemma 14, and the fact that Wt(b) is non-increasing with respect to t, we
have 1

Wti
(b) ≤

1
Wti+1

(b) ·
(

1− 1
3m

)

. Therefore the sequence { 1
WtK

(b) , . . . ,
1

Wt1 (b)
}

is upper-bounded by the geometric sequence with 1
WtK

(b) as the first term and

1− 1
3m as the common ratio. This implies that

K
∑

i=1

1

Wti(b)
≤ 3m ·

1

WtK (b)
≤ 3m ·

1

P
,

and

|E(b)| ≤ 3λ

K
∑

i=1

1

Wti(b)
≤ 18m2 ·

1

P
logT = O

(

1

P
logT

)

,

as desired.
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8 The General Setting where D + R ≥ 0

8.1 Lower Bound

In this section, we prove Theorem 1. If 0 ≤ D + R < 6 lnT and the target
loss L = O(T β), then Ω(log T

L ) = Ω(D + R + log T
L ) and hence Theorem 1 is

implied by Theorem 7. When D+R ≥ 6 lnT , we have the following Theorem 15.
Theorem 1 is then proved because Ω(D+R) = Ω(D+R+log T

L ) if D+R ≥ 6 lnT .

Theorem 15. For any recommendation algorithm that guarantees L = o(T )
worst-case expected loss and preserves ǫ-differential privacy, if D + R ≥ 6 lnT ,
then ǫ = Ω( 1

P (D +R)), even for an oblivious adversary.

Before proving Theorem 15, we first explain the intuition behind the proof
by a simple illustrative example. Imagine that there is one client Alice, and two
voting patterns V1 and V2. Both V1 and V2 contain only one voter named Bob,
but Bob may vote differently in V1 and V2. We let Bob be Alice’s peer in both
V1 and V2. For simplicity let us set R = 0, so Bob never votes on any object
that Alice dislikes. By Definition 1, V1 and V2 are 2-step voting patterns.

Now consider a particular round t with two candidate objects. If Alice likes
only one of the objects, then there is only one way for Bob to cast vote; otherwise
Bob will no longer be a peer of Alice. However, if Alice likes both objects, then
Bob can vote on different objects in V1 and V2 without breaking the promise
that he is Alice’s peer. Since Bob is the only information source of the system,
an recommendation algorithm A has to somehow “follow” Bob, and hence the
distributions of the executions A(Alice,V1) and A(Alice,V2) will be different. If
Alice’s diversity of preferences is D, then this situation can happen for D times,
which results an ǫ ∝ D. The linear dependency of ǫ on R is for a similar reason.

Proof of Theorem 15. We first prove Theorem 15 for the case where P = 1 and
6 lnT ≤ D + R ≤ T . Once we solve this case, the other cases can be easily
solved and we discuss them in the end of this proof.

To show Theorem 15 for the case where P = 1, it is sufficient to show that
for any given algorithm A, we can construct a client C and a pair of 2-step

adjacent voting patterns V〈U〉,V〈U ′〉, such that ln Pr[b]
Pr′[b] = Ω(D + R) for some

recommendation sequence b ∈ B1 × · · · × BT and a sufficiently large T .
We consider a particular setup in which there are two objects αt and βt in

each round t. We construct the client C by setting C’s preferences on αt’s and
βt’s. We will always ensure that C likes both αt and βt in at most D rounds,
hence that DC ≤ D. For the voting patterns V〈U〉 and V〈U ′〉, we let each of
them contain one voter. Let U and U ′ be the only voter in voting pattern V〈U〉
and V〈U ′〉, respectively. We ensure that both U and U ′ vote on at most R
objects that are disliked by the client C, hence both U and U ′ are C’s peers.

In sake of convenience, for any client C and any pair of voting patterns V〈U〉
and V〈U ′〉 as described above, we call the triple (C,V〈U〉,V〈U ′〉) a configura-
tion. We will introduce a random procedure of generating configurations for any
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given algorithm A, and then use it to demonstrate the existence of one “bad”
configuration that has large privacy leakage.

We construct a “bad” configuration round by round. Imagine that we are
running the two executions A(C,V〈U〉) and A(C,V〈U ′〉) simultaneously, and
now A is at the beginning of the tth round, with the previous recommendation
history being (b1, . . . , bt−1). Let us write b<t = (b1, . . . , bt−1) for short. At this
point, A will calculate the probabilities of recommending αt and βt, based on
the voter U ’s (or U ′’s) vote.

The voter U may vote on either αt or βt, and A’s probability of recom-
mending objects depends on how U vote. We use pα to denote the probability
that the algorithm A “follows” the voter U when U votes on αt. That is, pα
is A’s probability of recommending αt when U votes on αt, conditioned on the
recommendation history is b<t. Similarly, we define pβ to be the probability
that A “follows” the voter U when U votes on βt. We define p′α and p′β to be
the counterparts of pα and pβ with voter U replaced by voter U ′. I.e., p′α(p′β)
is the probability that A “follows” the voter U ′ when U ′ votes on αt(βt).

In order to better explain the intuition behind this proof, let us temporarily
assume an adaptive adversary, therefore the adversary could see the recommen-
dation history b<t and calculate pα, pβ , p′α and p′β by “simulating” A. It can then
(adaptively) construct a “bad” configuration by choosing one of the following 4
settings for round t, based on the values of pα, pβ , p′α and p′β:

• Setting 1 : the client likes αt, dislikes βt, and both U and U ′ vote on αt;

• Setting 2 : the client dislikes αt, likes βt, and both U and U ′ vote on βt;

• Setting 3 : the client likes both αt and βt, U votes on αt, and U ′ votes on
βt;

• Setting 4 : the client likes αt, dislikes βt, U votes on αt, and U ′ votes on
βt.

The adaptive construction is as follows:

• Case 1 : 0 ≤ min{pα, pβ} ≤
3
4 . We have two more subcases:

– Case 1.a: If pα ≤
3
4 , then the adversary chooses Setting 1, in which

case we have

E[Lt|b<t] = Pr[βt|b<t]

= 1− pα

≥
1

4
.

– Case 1.b: Else we must have pβ ≤
3
4 , in which case the adversary

chooses Setting 2. We have

E[Lt|b<t] = Pr[αt|b<t]
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= 1− pβ

≥
1

4
.

In summary, in Case 1, the adversary can always force the algorithm to
have a constant expected loss in round t.

• Case 2 : 3
4 < min{pα, pβ} ≤ 1.In this case, algorithm A “follows” voter U

with a large probability (at least 3
4 ) regardless how U votes. We have two

more subcases:

– Case 2.a: 0 ≤ p′β ≤
1
2 , in which case A “follows” voter U ′ with only

a small probability (at most 1
2 ) if U ′ votes on βt. Recall that A

“follows” voter U with probability at least 3
4 no matter which object

U votes on. Thus, if the adversary lets both U and U ′ vote on βt, the
two distributions Pr[·|b<t] and Pr′[·|b<t] will be sufficiently different,
and the algorithm A will “leak privacy.” Specifically, the adversary
will choose Setting 2 for Case 2.a and we have

E[Et|b<t] = Pr[αt|b<t] · ln
Pr[αt|b<t]

Pr′[αt|b<t]
+ Pr[βt|b<t] · ln

Pr[βt|b<t]

Pr′[βt|b<t]

= (1− pβ) ln
1− pβ
1− p′β

+ pβ ln
pβ
p′β

≥
1

4
ln

1/4

1/2
+

3

4
ln

3/4

1/2
(∵ pβ ≥

3
4 and p′β ≤

1
2 )

> 0.13.

That is, the expected “privacy leakage” in the tth round is at least a
constant.

– Case 2.b: 1
2 < p′β ≤ 1, in which case algorithm A “follows” voter U ′

with a large probability (at least 1
2 ) too if U ′ votes on βt. Since

A “follows” voter U with probability at least 3
4 no matter which

object U votes on, to make the distributions Pr[·|b<t] and Pr′[·|b<t]
be sufficiently different and force the algorithm to “leak privacy,” the
adversary can let U vote on αt and U ′ vote on βt — this is how
Setting 3 and Setting 4 are constructed. Notice that the adversary
cannot keep choosing Setting 3 or Setting 4, because the client likes
more than one objects in at most D rounds, and U and U ′ can vote on
at most R objects that are disliked by the client. In our construction,
the adversary will choose Setting 3 for the first D rounds that are in
Case 2.b, and then choose Setting 4 for the next R rounds that are
in Case 2.b. The adversary arbitrarily chooses Setting 1 or Setting 2
for the remaining rounds that are in Case 2.b.

If Setting 3 or Setting 4 is chosen, we have

E[Et|b<t] = Pr[αt|b<t] · ln
Pr[αt|b<t]

Pr′[αt|b<t]
+ Pr[βt|b<t] · ln

Pr[βt|b<t]

Pr′[βt|b<t]
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= pα ln
pα

1− p′β
+ (1− pα) ln

1− pα
p′β

≥
3

4
ln

3/4

1/2
+

1

4
ln

1/4

1/2
(∵ pα ≥

3
4 and p′β > 1

2 )

> 0.13.

If Setting 1 or Setting 2 is chosen, we have

E[Et|b<t] ≥ 0

because the relative entropy is always non-negative.

It can be shown that with this adaptive construction, E[E ] = Ω(D + R) for
any algorithm A, which implies the existence of one recommendation sequence

b such that E(b) = ln Pr[b]
Pr′[b] = Ω(D +R). To see why E[E ] = Ω(D +R), we first

notice that there cannot be too many rounds in Case 1 (including Case 1.a and
Case 1.b) on expectation, because A has to ensure o(T ) worst-case expected
loss. Therefore most of the rounds must be in Case 2.a or Case 2.b. If there
are many rounds in Case 2.a, then E[E ] must be large because E[Et|b<t] is at
least a constant in every Case 2.a round, and E[Et|b<t] ≥ 0 in all the other
rounds (the relative entropy is always non-negative). Otherwise, there must be
many rounds in Case 2.b. In this case, the adversary can choose Setting 3 and
Setting 4 for Ω(D +R) times, and we will have E[E ] = Ω(D +R).

The drawback of the above arguments is of course the assumption of an
adaptive adversary. To remove this assumption, an (oblivious) adversary will
choose Setting 1, Setting 2, Setting 3 or Setting 4 randomly in each round,
without looking at the recommendation history. In other words, we are to
construct a random configuration.

The random construction is as follows. In each round t, the adversary inde-
pendently draws a random variable Xt such that

Xt =



























0 with probablitiy
D +R

2T
,

1 with probablitiy
1

2
(1−

D +R

2T
),

2 with probablitiy
1

2
(1−

D +R

2T
).

The adversary chooses Setting 1 for the tth round if Xt = 1, and it chooses
Setting 2 for the tth round round if Xt = 2. If Xt = 0, the adversary does
the following: if it has chosen Setting 3 for less than D times before the tth
round, chooses Setting 3 ; else chooses Setting 4. Notice that in this random
construction, it is possible to get an “illegal” configuration (i.e., a configuration
with more than R rounds in Setting 4 ). However, since Pr[Xt = 0] = D+R

2T , the
expected number of rounds in which Xt = 0 is 1

2 (D+R). By Chernoff’s bound,
the probability that we have more than D + R rounds with Xt = 0 is at most
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1
T (here the condition D+R ≥ 6 lnT is used). In other words, our construction
generates a “legal” configuration with high probability.

This oblivious construction is analogous to the aforementioned adaptive one
in the following sense: previously, if A is in Case 1.a, Case 1.b or Case 2.a,
it will encounter a “bad” setting (which is Setting 1, Setting 2 and Setting 2,
respectively) for sure; now A encounters a “bad” setting with a constant proba-
bility 1

2 (1−
D+R
2T ) ≥ 1

4 . Moreover, in the oblivious construction, we also ensure
that there are sufficiently many rounds (12 (D + R) rounds on expectation) in
which Setting 3 or Setting 4 is chosen.

Due to this analogousness between these two constructions, we can derive a
similar lower bound for E[E ] and prove Theorem 15 for the case of P = 1 and
6 lnT ≤ D +R ≤ T :

Let F be the universe of all possible configurations, for any configuration
F = (C,V〈U〉,V〈U ′〉) ∈ F , we use Pr[·|F ], Pr′[·|F ] and E[·|F ] to denote the
corresponding probabilities and expectations in the executions of A(C,V〈U〉)
and A(C,V〈U ′〉).

Given any subset G ⊆ F , we define the following “conditional” relative en-
tropies over G:

E[Et|G] =
∑

F∈G

E[Et|F ] · Pr[F |G]

and

E[E|G] =

T
∑

t=1

E[Et|G]

=
∑

F∈G

E[E|F ] · Pr[F |G].

We emphasize that E[Et|G] and E[E|G] themselves are not necessarily to be
relative entropies, although E[Et|F ] and E[E|F ] are relative entropies for each
single F ∈ F .

Let F0 ⊆ F be the universe of all the “legal” configurations (i.e., the con-
figurations with at most R rounds in Setting 4 ). We will show that E[E|F0] =
Ω(D + R). We can then conclude that there exists one “legal” configuration

F ∈ F0, such that ln Pr[b|F ]
Pr′[b|F ] = Ω(D + R) for some recommendation sequence

b ∈ B1 × · · · × BT .
Define I

(1.a)
t , I

(1.b)
t , I

(2.a)
t , I

(2.b)
t to be the indicator random variables such

that

• I
(1.a)
t = 1 iff the tth round is in Case 1.a;

• I
(1.b)
t = 1 iff the tth round is in Case 1.b;

• I
(2.a)
t = 1 iff the tth round is in Case 2.a;

• I
(2.b)
t = 1 iff the tth round is in Case 2.b.
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Since the expected loss of A(C,V〈U〉) is at least 1
4 if the tth round is in Case 1.a

and Setting 1 is chosen (i.e., E[Lt|I
(1.a)
t = 1 and Xt = 1] ≥ 1

4 ), we have

E[Lt] ≥
1

4
· Pr[I

(1.a)
t = 1, Xt = 1]

=
1

4
· Pr[I

(1.a)
t = 1] · Pr[Xt = 1]

=
1

8

(

1−
D +R

2T

)

· Pr[I
(1.a)
t = 1]

≥
1

16
· E[I

(1.a)
t ]. (5)

The second step is because I
(1.a)
t and Xt are independent (although I

(1.a)
t may

depend on Xs for s < t). Take summation over t on both sides of (5), we get

E

[

T
∑

t=1

Lt

]

≥
1

16
· E

[

T
∑

t=1

I
(1.a)
t

]

. (6)

Similarly, since the expected loss of A(C,V〈U〉) is at least 1
4 if the tth round is

in Case 1.b and Setting 2 is chosen (i.e., E[Lt|I
(1.b)
t = 1 and Xt = 2] ≥ 1

4 ), we
have

E

[

T
∑

t=1

Lt

]

≥
1

16
· E

[

T
∑

t=1

I
(1.b)
t

]

. (7)

Combine (6) and (7), we get

E

[

T
∑

t=1

Lt

]

≥
1

32
·

(

E

[

T
∑

t=1

I
(1.a)
t

]

+ E

[

T
∑

t=1

I
(1.b)
t

])

. (8)

Recall that the expectation of Et is at least 0.13 if the tth round is in Case 2.a

and Setting 2 is chosen (i.e., E[Et|I
(2.a)
t = 1 and Xt = 2] ≥ 0.13), and that

expectation is at least 0 in other cases (because the relative entropy is always
non-negative), we have

E[Et|F0] ≥ 0.13 · Pr[I
(2.a)
t = 1, Xt = 2|F0]

≥ 0.13 ·

(

Pr[I
(2.a)
t = 1, Xt = 2]−

1

T

)

= 0.13 ·

(

Pr[I
(2.a)
t = 1] · Pr[Xt = 2]−

1

T

)

= 0.13 ·

(

1

2

(

1−
D +R

2T

)

· Pr[I
(2.a)
t = 1]−

1

T

)

≥ 0.13 ·

(

1

4
· E[I

(2.a)
t ]−

1

T

)

. (9)
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The second step is because

Pr[I
(2.a)
t = 1, Xt = 2|F0]

=
1

Pr[F0]
(Pr[I

(2.a)
t = 1, Xt = 2]− Pr[I

(2.a)
t = 1, Xt = 2|F \ F0] · Pr[F \ F0])

≥ Pr[I
(2.a)
t = 1, Xt = 2]− Pr[F \ F0]

≥ Pr[I
(2.a)
t = 1, Xt = 2]−

1

T
,

and the third step is because I
(2.a)
t and Xt are independent (although I

(2.a)
t may

depend on Xs for s < t). Take summation over t on both sides of (9), we get

E[E|F0] = E

[

T
∑

t=1

Et

∣

∣

∣

∣

F0

]

≥ 0.13 ·

(

1

4
· E

[

T
∑

t=1

I
(2.a)
t

]

− 1

)

. (10)

Similarly, by the fact that the expectation of Et is at least 0.13 if the tth

round is in Case 2.b and Setting 3 or Setting 4 is chosen (i.e., E[Et|I
(2.b)
t =

1 and Xt = 0] ≥ 0.13), we have

E[Et|F0] ≥ 0.13 · Pr[I
(2.b)
t = 1, Xt = 0|F0]

≥ 0.13 ·

(

Pr[I
(2.b)
t = 1] · Pr[Xt = 0]−

1

T

)

= 0.13 ·

(

D +R

2T
· Pr[I

(2.b)
t = 1]−

1

T

)

= 0.13 ·

(

D +R

2T
· E[I

(2.b)
t ]−

1

T

)

. (11)

Take summation over t on both sides of (11), we obtain

E[E|F0] ≥ 0.13 ·

(

D +R

2T
· E

[

T
∑

t=1

I
(2.b)
t

]

− 1

)

. (12)

We are now ready to derive a lower bound for E[E|F0]:

• If E
[

∑T
t=1 I

(2.b)
t

]

≥ T
2 , by (12), we have

E[E|F0] ≥ 0.13 ·

(

1

4
(D +R)− 1

)

= Ω(D +R).
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• If E
[

∑T
t=1 I

(2.b)
t

]

< T
2 , then

E

[

T
∑

t=1

I
(1.a)
t

]

+ E

[

T
∑

t=1

I
(1.b)
t

]

+ E

[

T
∑

t=1

I
(2.a)
t

]

>
T

2
.

By (8), we have

E

[

T
∑

t=1

I
(2.a)
t

]

>
T

2
−

(

E

[

T
∑

t=1

I
(1.a)
t

]

+ E

[

T
∑

t=1

I
(1.b)
t

])

≥
T

2
− 32 · E

[

T
∑

t=1

Lt

]

.

Substitute this to (10), we get

E[E|F0] ≥ 0.13 ·

(

1

4
·

(

T

2
− 32 · E

[

T
∑

t=1

Lt

])

− 1

)

≥ 0.13 ·

(

1

4
·

(

T

2
− o(T )

)

− 1

)

= Ω(T )

= Ω(D +R).

The second step is because

E

[

T
∑

t=1

Lt

]

= E

[

T
∑

t=1

Lt

∣

∣

∣

∣

F0

]

· Pr[F0] + E

[

T
∑

t=1

Lt

∣

∣

∣

∣

F \ F0

]

· Pr[F \ F0]

≤ E

[

T
∑

t=1

Lt

∣

∣

∣

∣

F0

]

+ T ·
1

T

≤ max
F∈F0

E

[

T
∑

t=1

Lt

∣

∣

∣

∣

F

]

+ 1

≤ L+ 1

= o(T ).

We have shown that Theorem 15 holds if 6 lnT ≤ D + R ≤ T and P = 1.
Now we prove Theorem 15 for the cases where D +R > T and/or P > 1.

When D+R > T (still assuming P = 1). When D+R > T , we can choose
another pair of D′ and R′, such that D′ ≤ R, R′ ≤ R and D′ + R′ = T . If we
use D′ and R′ (instead of D and R) to do the above construction, we can show
that the E[E|F0] = Ω(D′+R′). Recall that D ∈ {0, . . . , T } and R ∈ {0, . . . , T },
thus D +R ≤ 2T and Ω(D′ +R′) = Ω(D +R). This finishes the proof.
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When P > 1. In the above proof for the case of P = 1, we construct two
voting patterns V〈U〉 and V〈U ′〉, each of which contains a single voter U and
U ′, respectively. We can extend this proof to the case of P > 1 by considering a
voting pattern containing P voters who vote exactly the same as U , and another
voting pattern containing P voters who vote exactly the same as U ′. Such a
pair of voting patterns are 2P -step adjacent to each other, and we will get an
additional factor of Θ( 1

P ) in our lower bound for the ǫ.

8.2 Algorithm

We propose the following p-REC algorithm for the general setting where D+R ≥
0. The p-REC algorithm is a generalized version of the p-RECsim algorithm,
and it shares a similar structure as that of p-RECsim, except that the procedure
UpdateWeight() is replaced by UpdateCreditAndWeight(). In fact, we can get
back the p-RECsim algorithm by setting D = R = 0 in the p-REC algorithm.

Input : A client C, a voting pattern V〈U〉
Output : Recommend an object from Bt to client C in each round t
Initialization: γ ← m

(3T/(R+1))−1 ; λ← 2m ln T
R+1 ; ρ← 1

2m ; for each

i ∈ U : credit(D)[i]← 2D, credit(R)[i]← 2R+ 1,
weight[i]← 1

Procedure Main()

foreach round t = 1, . . . , T do
obj← RecommendByWeight(weight[ ]);
Recommend object obj to the client C;
feedback← the client C’s feedback on object obj;

UpdateCreditAndWeight(credit(D)[ ], credit(R)[ ], weight[ ], obj,
feedback);

Procedure UpdateCreditAndWeight(credit(D)[ ], credit(R)[ ], weight[ ],
obj, feedback)

if feedback = “dislike” then

credit(R)[i]← credit(R)[i]− 1 for every voter i who votes on obj;
else

credit(D)[i]← credit(D)[i]− 1 for every voter i who does not vote
on obj;

foreach voter i ∈ U do

if credit(R)[i] > 0 and credit(D)[i] + credit(R)[i] > 0 then
weight[i]← 1;

else
weight[i]← 0;

Algorithm 2: Privacy-preserving RECommendation (p-REC) algorithm.
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In the beginning of the p-REC algorithm, each voter i ∈ U is initial-
ized with two credit values credit(D)[i] = 2D (which we call D-credit) and

credit(R)[i] = 2R + 1 (which we call R-credit). In each round t, the algorithm
recommends objects in the same way as the p-RECsim algorithm by invoking
the RecommendByWeight() procedure. After it receives the client’s feedback,
the algorithm updates each voter’s credit and then calculate his/her weight by
invoking the UpdateCreditAndWeight() procedure.

To see the intuition behind the p-REC algorithm, let us analyze why the
p-RECsim algorithm fails in the general setting where D + R ≥ 0. If we run
p-RECsim in the general setting, we may end up with a situation where all the
client’s peers are kicked out from the system. A client’s peer can be (wrongly)
“kicked out” in two scenarios:

• when the client likes more than one objects in some round, the peer votes
on one such object, but another such object is recommended;

• when the peer votes on an object that the client dislikes, and that object
is recommended to the client.

However, since these two scenarios can happen for at most D + R times, a
natural idea is to give a voter D+R more “chances” before we kick out him/her.
Motivated by this, we could initialize each voter i with D + R + 1 credit, and
deduct i’s credit by 1 when i is caught to vote on an object the client dislikes,
or when the client likes the recommended object but i does not vote on it. We
kick out a voter only when he/she has no credit.

For some technical reasons that will be clear later, the p-REC algorithm
needs to introduce two types of credit (D-credit and R-credit), and deducts
different types of credit in different situations. It also initializes each voter with
2D (instead of D) D-credit and 2R+ 1 (instead of R+ 1) R-credit.

Loss analysis of the p-REC algorithm. In the remaining parts of this
section, we prove Theorem 2. We first analyze the loss of the p-REC algorithm,
we have:

Theorem 16. The p-REC algorithm guarantees O((R + 1) log n
P ) worst-case

expected loss, even for an adaptive adversary.

Proof. The proof of this theorem is very similar to the proof of Theorem 10.
First consider all the rounds with Zt = 0. Let Wt be the number of surviving

voters in the tth round and C
(R)
t =

∑

i∈U weight[i] · credit(R)[i] be the total R-
credit of all these Wt surviving voters in the tth round. If the client incurs a loss
in the tth round, at least ρ fraction of surviving voters will get their R-credit
deducted by 1. That is,

C
(R)
t+1 ≤ C

(R)
t − ρWt. (13)

Since each voter has at most 2R + 1 R-credit, we have C
(R)
t ≤ (2R + 1)Wt.
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Substitute this back to (13), we get

C
(R)
t+1 ≤ C

(R)
t ·

(

1−
ρ

2R+ 1

)

.

In other words, C
(R)
t decreases by at least ρ

2R+1 fraction whenever the client
incurs a loss. Notice that the total R-credit of all the surviving voters are
initially at most (2R + 1)n and always at least (R + 1)P (the client’s P peers
always have at least R + 1 R-credit), it then follows that the number of loss

rounds with Zt = 0 can be at most 2R+1
ρ ln (2R+1)n

(R+1)P = O((R + 1) log n
P ).

For those rounds with Zt = 1, they cause at most γT = O(R) additional
expected loss.

Here we see the reason of introducing two types of credit: if we only had one
type of credit, the upper bound of loss would be O((D+R+1) log n

P ), which is
not only linear to R, but also to D — this is logically wrong, because if a client
likes more objects, the loss should only be smaller.

Privacy analysis of the p-REC algorithm. Next we analyze the privacy
of the p-REC algorithm, we have:

Theorem 17. The p-REC algorithm preserves O( 1
P (D+R+1) log T

R+1 )-differential
privacy, even for an adaptive adversary.

The proof of Theorem 17 follows a very similar structure to that of Theo-
rem 11. Again, we consider two executions p-REC(C,V〈U〉) and p-REC(C,V〈U ′〉)
for a fixed client C and a fixed pair of adjacent voting patterns V〈U〉,V〈U ′〉 (U
contains one more voter than U ′). Our goal is to show that |E(b)| = O( 1

P (D +

R + 1) log T
R+1 ) for any fixed recommendation sequence b = (b1, . . . , bT ) ∈

B1 × · · · × BT .
We define the number of surviving voters Wt(b) in the same way as before.

In addition, we define Ct(b) =
∑

i∈U weight[i] · (credit(D)[i] + credit(R)[i]) to be
the total credit (D-credit plus R-credit) of all the surviving voters at the be-
ginning of round t in the execution p-REC(C,V〈U〉), conditioned on that the
recommendations in the first t− 1 rounds are b1, . . . , bt−1. We have:

Lemma 18. For any round t, |Et(b)| ≤ 3(2D + 2R+ 1) · λ
Ct(b)

.

Proof. We can show |Et(b)| ≤ 3λ · 1
Wt(b)

in exactly the same way as the proof

of Lemma 12. Recall that each voter has at most 2D + 2R + 1 total credit,
we therefore have Ct(b) ≤ (2D + 2R + 1)Wt(b). Lemma 18 is then proved by
substituting this back to |Et(b)| ≤ 3λ · 1

Wt(b)
.

Lemma 19. For any round t, if |Et(b)| 6= 0, then

Ct+1(b) ≤ Ct(b) ·

(

1−
1

3m(2D + 2R+ 1)

)

.
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Proof. By following the same arguments in the proof of Lemma 14, we can
show that at least 1

3m fraction of surviving voters get their D-credit or R-credit
deducted by 1 after the tth round. That is,

Ct+1(b) ≤ Ct(b)−
1

3m
Wt(b). (14)

Since Ct(b) ≤ (2D + 2R+ 1)Wt(b), substituting this back to (14), we have

Ct+1(b) ≤ Ct(b) ·

(

1−
1

3m(2D + 2R+ 1)

)

,

as desired.

Now we can prove Theorem 17:

Proof of Theorem 17. Let t1, . . . , tK be the rounds in which |Eti(b)| 6= 0. By
replacing Lemma 12 and Lemma 14 with Lemma 18 and Lemma 19, respectively,
and then following the same arguments in the proof of Theorem 11, we can show
that

|E(b)| ≤ 3(2D + 2R+ 1)λ

K
∑

i=1

1

Cti(b)
(15)

and
K
∑

i=1

1

Cti(b)
≤ 3m(2D + 2R+ 1) ·

1

CtK (b)
. (16)

Since CtK (b) ≥ P (D +R+ 1), substitute this to (16), we have

K
∑

i=1

1

Cti(b)
≤ 3m(2D + 2R+ 1) ·

1

P (D +R+ 1)
≤ 6m ·

1

P
. (17)

We get the desired result by substitute (17) back to (15).

Here the reason of giving each voter 2D initial D-credit and 2R+1 initial R-
credit becomes clear: if we were to give each voter D initial D-credit and R+1
initial R-credit, we could only get CtK (b) ≥ P instead of CtK (b) ≥ P (D+R+1),
which would introduce an extra Θ(D +R) factor in the result.
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