Skip to main content

Improved Impossible Differential Attack on Reduced-Round LBlock

  • Conference paper
  • First Online:
Information Security and Cryptology - ICISC 2015 (ICISC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9558))

Included in the following conference series:

  • 1053 Accesses

Abstract

LBlock is a 32-round lightweight block cipher with a 64-bit block size and an 80-bit key. This paper presents a new impossible differential attack on LBlock by improving the previous best result for 1 more round. Based on the nibble conditions, detailed differential properties of LBlock S-Boxes and thorough exploration of subkey relations, we set up well precomputation tables to collect the data needed and propose an optimal key-guessing arrangement to effectively reduce the time complexity of the attack. With these techniques, we launch an impossible differential attack on 24-round LBlock. To the best of our knowledge, this attack is currently the best in terms of the number of rounds attacked (except for biclique attacks).

N. Wang—Supported by National Key Basic Research Program of China (Grant No. 2013CB834205), and the National Natural Science Foundation of China (Grant No. 61133013 and 61402256).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AlTawy, R., Tolba, M., Youssef, A.M.: A higher order key partitioning attack with application to LBlock. In: Hajji, S.E., Nitaj, A., Carlet, C., Souidi, E.M. (eds.) C2SI 2015. LNCS, vol. 9084, pp. 215–227. Springer, Heidelberg (2015)

    Google Scholar 

  2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers. IACR Cryptology ePrint Archive 2013/404 (2013)

    Google Scholar 

  3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 12. Springer, Heidelberg (1999)

    Google Scholar 

  4. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Boura, C., Minier, M., Naya-Plasencia, M., Suder, V.: Improved impossible differential attacks against round-reduced LBlock. Cryptology ePrint Archive, Report 2014/279 (2014)

    Google Scholar 

  6. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible differential attacks: applications to CLEFIA, Camellia, LBlock and Simon. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 179–199. Springer, Heidelberg (2014)

    Google Scholar 

  7. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Karakoç, F., Demirci, H., Harmancı, A.E.: Impossible differential cryptanalysis of reduced-round LBlock. In: Askoxylakis, I., Pöhls, H.C., Posegga, J. (eds.) WISTP 2012. LNCS, vol. 7322, pp. 179–188. Springer, Heidelberg (2012)

    Google Scholar 

  9. Knudsen, L.: DEAL - a 128-bit block cipher. In: NIST AES Proposal (1998)

    Google Scholar 

  10. Li, Z., Zhang, B., Yao, Y., Lin, D.: Cube cryptanalysis of LBlock with noisy leakage. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 141–155. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Liu, S., Gong, Z., Wang, L.: Improved related-key differential attacks on reduced-round LBlock. In: Chim, T.W., Yuen, T.H. (eds.) ICICS 2012. LNCS, vol. 7618, pp. 58–69. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Liu, Y., Gu, D., Liu, Z., Li, W.: Impossible differential attacks on reduced-round LBlock. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 97–108. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Lu, J., Kim, J.-S., Keller, N., Dunkelman, O.: Improving the efficiency of impossible differential cryptanalysis of reduced camellia and MISTY1. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Minier, M., Naya-Plasencia, M.: A related key impossible differential attack against 22 rounds of the lightweight block cipher LBlock. Inf. Process. Lett. 112(16), 624–629 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, N., Xiaoyun Wang, K.: Differential attacks on reduced SIMON versions with dynamic key-guessing techniques. Cryptology ePrint Archive, Report 2014/448 (2014)

    Google Scholar 

  16. Sasaki, Y., Wang, L.: Comprehensive study of integral analysis on 22-round LBlock. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 156–169. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Sasaki, Y., Wang, L.: Meet-in-the-middle technique for integral attacks against feistel ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 234–251. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Soleimany, H., Nyberg, K.: Zero-correlation linear cryptanalysis of reduced-round LBlock. Des. Codes Crypt. 73(2), 683–698 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: a lightweight block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Wang, Y., Wu, W.: Improved multidimensional zero-correlation linear cryptanalysis and applications to LBlock and TWINE. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 1–16. Springer, Heidelberg (2014)

    Google Scholar 

  21. Wang, Y., Wu, W., Yu, X., Zhang, L.: Security on LBlock against biclique cryptanalysis. In: Lee, D.H., Yung, M. (eds.) WISA 2012. LNCS, vol. 7690, pp. 1–14. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Wen, L., Wang, M.Q., Zhao, J.Y.: Related-key impossible differential attack on reduced-round LBlock. J. Comput. Sci. Technol. 29(1), 165–176 (2014)

    Article  Google Scholar 

  23. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Wang .

Editor information

Editors and Affiliations

A Detailed Differences Distribution of S-Box and Precomoutation Tables

A Detailed Differences Distribution of S-Box and Precomoutation Tables

Table 5. Distribution of input and output differences of \(S_0\)
Table 6. Precomputation tables of keys

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, N., Wang, X., Jia, K. (2016). Improved Impossible Differential Attack on Reduced-Round LBlock. In: Kwon, S., Yun, A. (eds) Information Security and Cryptology - ICISC 2015. ICISC 2015. Lecture Notes in Computer Science(), vol 9558. Springer, Cham. https://doi.org/10.1007/978-3-319-30840-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30840-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30839-5

  • Online ISBN: 978-3-319-30840-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics