Abstract
For classical domains, such as movies, recommender systems have proven their usefulness. But recommending news is more challenging due to the short life span of news content and the demand for up-to-date recommendations. This paper presents a news recommendation service with a content-based algorithm that uses features of a search engine for content processing and indexing, and a collaborative filtering algorithm for serendipity. The extension towards a context-aware algorithm is made to assess the information value of context in a mobile environment through a user study. Analyzing interaction behavior and feedback of users on three recommendation approaches shows that interaction with the content is crucial input for user modeling. Context-aware recommendations using time and device type as context data outperform traditional recommendations with an accuracy gain dependent on the contextual situation. These findings demonstrate that the user experience of news services can be improved by a personalized context-aware news offer.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)
Adomavicius, G., Tuzhilin, A.: Tutorial on context-aware recommender systems. In: Proceedings of the Second ACM Conference on Recommender Systems (RecSys 2008) (2008)
Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 217–253. Springer, US (2011). http://dx.doi.org/10.1007/978-0-387-85820-3_7
Apache Software Foundation: Apache storm (2015). http://storm.apache.org/
Baltrunas, L., Ricci, F.: Context-based splitting of item ratings in collaborative filtering. In: Proceedings of the Third ACM Conference on Recommender Systems. RecSys 2009, NY, USA, pp. 245–248 (2009). http://doi.acm.org/10.1145/1639714.1639759
Bogers, T., van den Bosch, A.: Comparing and evaluating information retrieval algorithms for news recommendation. In: Proceedings of the 2007 ACM Conference on Recommender Systems. RecSys 2007, NY, USA, pp. 141–144 (2007). http://doi.acm.org/10.1145/1297231.1297256
Brown, P.F., deSouza, P.V., Mercer, R.L., Pietra, V.J.D., Lai, J.C.: Class-based n-gram models of natural language. Comput. Linguist. 18(4), 467–479 (1992). http://dl.acm.org/citation.cfm?id=176313.176316
Cantador, I., BellogÃn, A., Castells, P.: News@hand: a semantic web approach to recommending news. In: Nejdl, W., Kay, J., Pu, P., Herder, E. (eds.) AH 2008. LNCS, vol. 5149, pp. 279–283. Springer, Heidelberg (2008). http://dx.doi.org/10.1007/978-3-540-70987-9_34
Cutting, D., Pedersen, J.: Optimization for dynamic inverted index maintenance. In: Proceedings of the 13th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR 1990, NY, USA, pp. 405–411 (1990). http://doi.acm.org/10.1145/96749.98245
De Pessemier, T., De Moor, K., Joseph, W., De Marez, L., Martens, L.: Quantifying subjective quality evaluations for mobile video watching in a semi-living lab context. IEEE Trans. Broadcast. 58(4), 580–589 (2012)
De Pessemier, T., Coppens, S., Geebelen, K., Vleugels, C., Bannier, S., Mannens, E., Vanhecke, K., Martens, L.: Collaborative recommendations with content-based filters for cultural activities via a scalable event distribution platform. Multimedia Tools Appl. 58(1), 167–213 (2012). http://dx.doi.org/10.1007/s11042-010-0715-8
De Pessemier, T., Dooms, S., Martens, L.: Context-aware recommendations through context and activity recognition in a mobile environment. Multimedia Tools Appl. 72(3), 2925–2948 (2014). http://dx.doi.org/10.1007/s11042-013-1582-x
Elastic: Elasticsearch (2015). https://www.elastic.co/
Følstad, A.: Living labs for innovation and development of information and communication technology: A literature review. Electron. J. Organ. Virtualness 10, 99–131 (2008)
Google: Google Hourly Trends (2015). http://www.google.com/trends/hottrends/atom/hourly
Han, B.J., Rho, S., Jun, S., Hwang, E.: Music emotion classification and context-based music recommendation. Multimedia Tools Appl. 47(3), 433–460 (2010). http://dx.doi.org/10.1007/s11042-009-0332-6
Hatcher, E., Gospodnetic, O.: Lucene in action (in action series) (2004)
Hopfgartner, F., Kille, B., Lommatzsch, A., Plumbaum, T., Brodt, T., Heintz, T.: Benchmarking news recommendations in a living lab. In: Kanoulas, E., Lupu, M., Clough, P., Sanderson, M., Hall, M., Hanbury, A., Toms, E. (eds.) CLEF 2014. LNCS, vol. 8685, pp. 250–267. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-319-11382-1_21
Katta: Lucune & more in the cloud (2015). http://katta.sourceforge.net/
Kenteris, M., Gavalas, D., Mpitziopoulos, A.: A mobile tourism recommender system. In: Proceedings of the IEEE Symposium on Computers and Communications. ISCC 2010, pp. 840–845. IEEE Computer Society, Washington, DC (2010)
Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.: Grouplens: applying collaborative filtering to usenet news. Commun. ACM 40(3), 77–87 (1997). http://doi.acm.org/10.1145/245108.245126
Lee, H., Kim, J., Park, S.: Understanding collaborative filtering parameters for personalized recommendations in e-commerce. Electron. Commer. Res. 7(3–4), 293–314 (2007). http://dx.doi.org/10.1007/s10660-007-9004-7
Li, L., Wang, D., Li, T., Knox, D., Padmanabhan, B.: Scene: a scalable two-stage personalized news recommendation system. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR 2011, NY, USA, pp. 125–134 (2011). http://doi.acm.org/10.1145/2009916.2009937
Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, US (2011). http://dx.doi.org/10.1007/978-0-387-85820-3_3
Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to Information Retrieval, vol. 1. Cambridge University Press, Cambridge (2008)
Papagelis, M., Plexousakis, D., Kutsuras, T.: Alleviating the sparsity problem of collaborative filtering using trust inferences. In: Herrmann, P., Issarny, V., Shiu, S.C.K. (eds.) iTrust 2005. LNCS, vol. 3477, pp. 224–239. Springer, Heidelberg (2005)
Phelan, O., McCarthy, K., Smyth, B.: Using twitter to recommend real-time topical news. In: Proceedings of the Third ACM Conference on Recommender Systems. RecSys 2009, NY, USA, pp. 385–388 (2009). http://doi.acm.org/10.1145/1639714.1639794
Porter, M.F.: Snowball: a language for stemming algorithms (2001). http://snowball.tartarus.org/
Reuters Institute for the Study of Journalism: Digital News Report (2014). http://www.digitalnewsreport.org/
Ricci, F.: Mobile recommender systems. Inf. Technol. Tourism 12(3), 205–231 (2010)
Ricci, F.: Contextualizing recommendations. In: ACM RecSys Workshop on Context-Aware Recommender Systems (CARS 2012). In: Conjunction with the 6th ACM Conference on Recommender Systems (RecSys 2012). ACM, September 2012
Said, A., BellogÃn, A., de Vries, A.: News recommendation in the wild: Cwi’s recommendation algorithms in the NRS challenge. In: Proceedings of the 2013 International News Recommender Systems Workshop and Challenge. NRS, vol. 13 (2013)
Shani, G., Gunawardana, A.: Tutorial on application-oriented evaluation of recommendation systems. AI Commun. 26(2), 225–236 (2013)
Shaphira, B., Rokach, L.: Recommender systems and search engines-two sides of the same coin? Slide Lecture (2012). http://medlib.tau.ac.il/teldan-2010/bracha.ppt
Telematica Instituut / Novay: Duine Framework (2009). http://duineframework.org/
The Apache Software Foundation: Apache Lucene (2015). https://lucene.apache.org/
The Apache Software Foundation: Apache Mahout (2015). http://mahout.apache.org/users/recommender/recommender-documentation.html
The Apache Software Foundation: Apache Solr (2015). http://lucene.apache.org/solr/
Reuters, T.: Open Calais (2008–2013). http://www.opencalais.com/
Weiss, A.S.: Exploring news apps and location-based services on the smartphone. Journalism Mass Commun. Q. 90(3), 435–456 (2013)
Woodman, M.: Rome (2015). https://rometools.jira.com/wiki/display/ROME/Home
Yu, Z., Zhou, X., Zhang, D., Chin, C.Y., Wang, X., men, J.: Supporting context-aware media recommendations for smart phones. IEEE Pervasive Comput. 5(3), 68–75 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
De Pessemier, T., Vanhecke, K., Martens, L. (2016). A Personalized and Context-Aware News Offer for Mobile Devices. In: Monfort, V., Krempels, KH., Majchrzak, T.A., Turk, Ž. (eds) Web Information Systems and Technologies. WEBIST 2015. Lecture Notes in Business Information Processing, vol 246. Springer, Cham. https://doi.org/10.1007/978-3-319-30996-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-30996-5_8
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-30995-8
Online ISBN: 978-3-319-30996-5
eBook Packages: Computer ScienceComputer Science (R0)