Skip to main content

A Comparison Between Representations for Evolving Images

  • Conference paper
  • First Online:
Evolutionary and Biologically Inspired Music, Sound, Art and Design (EvoMUSART 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9596))

Abstract

Evolving images using genetic programming is a complex task and the representation of the solutions has an important impact on the performance of the system. In this paper, we present two novel representations for evolving images with genetic programming. Both these representations are based on the idea of recursively partitioning the space of an image. This idea distinguishes these representations from the ones that are currently most used in the literature. The first representation that we introduce partitions the space using rectangles, while the second one partitions using triangles. These two representations are compared to one of the most well known and frequently used expression-based representations, on five different test cases. The presented results clearly indicate the appropriateness of the proposed representations for evolving images. Also, we give experimental evidence of the fact that the proposed representations have a higher locality compared to the compared expression-based representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this context abstract is used to denote images that do not have to represent particular shapes or patterns, while figurative is used as its opposite.

References

  1. Draves, S.: The electric sheep screen-saver: a case study in aesthetic evolution. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 458–467. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Hart, D.A.: Toward greater artistic control for interactive evolution of images and animation. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 527–536. Springer, Heidelberg (2007)

    Google Scholar 

  3. Romero, J.J., Machado, P. (eds.): The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music. Natural Computing Series. Springer, Heidelberg (2008)

    Google Scholar 

  4. World, L.: Aesthetic selection: the evolutionary art of Steven Rooke [about the cover]. Comput. Graph. Appl. 16(1), 4 (1996)

    Article  Google Scholar 

  5. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  6. Koza, J.R.: Genetic Programming. The MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  7. Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

    Article  Google Scholar 

  8. Baluja, S., Pomerleau, D., Jochem, T.: Towards automated artificial evolution for computer-generated images. Connect. Sci. 6(2–3), 325–354 (1994)

    Article  Google Scholar 

  9. Nguyen, A., Yosinski, J., Clune, J.: Innovation engines: automated creativity and improved stochastic optimization via deep learning. In: Proceedings of the Genetic and Evolutionary Computation Conference (2015)

    Google Scholar 

  10. Correia, J., Machado, P., Romero, J., Carballal, A.: Evolving figurative images using expression-based evolutionary art. In: Proceedings of the Fourth International Conference on Computational Creativity, p. 24 (2013)

    Google Scholar 

  11. Machado, P., Correia, J., Romero, J.: Expression-based evolution of faces. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 187–198. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Martins, T., Correia, J., Costa, E., Machado, P.: Evotype: evolutionary type design. In: Johnson, C., Carballal, A., Correia, J. (eds.) EvoMUSART 2015. LNCS, vol. 9027, pp. 136–147. Springer, Heidelberg (2015)

    Google Scholar 

  13. Woolley, B.G., Stanley, K.O.: On the deleterious effects of a priori objectives on evolution and representation. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 957–964. ACM (2011)

    Google Scholar 

  14. Galván-López, E., McDermott, J., O’Neill, M., Brabazon, A.: Defining locality as a problem difficulty measure in genetic programming. Genet. Program Evolvable Mach. 12(4), 365–401 (2011)

    Article  Google Scholar 

  15. Galvan, E., Trujillo, L., McDermott, J., Kattan, A.: Locality in continuous fitness-valued cases and genetic programming difficulty. In: Schütze, O., Coello Coello, C.A., Tantar, A.-A., Tantar, E., Bouvry, P., Del Moral, P., Legrand, P. (eds.) EVOLVE - A Bridge Between Probability, Set Oriented Numerics, and Evolutionary Computation II. AISC, vol. 175, pp. 41–56. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Stadler, P.F.: Fitness landscapes. In: Biological Evolution and Statistical Physics, pp. 183–204. Springer, Heidelberg (2002)

    Google Scholar 

  17. Rothlauf, F.: Design of representations and search operators. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 1061–1083. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  18. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In: Whitley, D. (ed.) FOGA-2, pp. 93–108. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  19. Horn, J., Goldberg, D.E.: Genetic algorithm difficulty and the modality of the fitness landscapes. In: Whitley, D., Vose, M. (eds.) FOGA-3, pp. 243–269. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  20. Mitchell, M., Forrest, S., Holland, J.: The royal road for genetic algorithms: fitness landscapes and GA performance. In: Varela, F.J., Bourgine, P. (eds.) Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, pp. 245–254. MIT Press, Cambridge (1996)

    Google Scholar 

  21. Forrest, S., Mitchell, M.: What makes a problem hard for a genetic algorithm? Some anomalous results and their explanation. Mach. Learn. 13, 285–319 (1993)

    Article  Google Scholar 

  22. Chakraborty, U.K., Janikow, C.Z.: An analysis of gray versus binary encoding in genetic search. Inf. Sci. 156(3–4), 253–269 (2003)

    Article  MathSciNet  Google Scholar 

  23. Vanneschi, L.: Theory and Practice for Efficient Genetic Programming. Ph.D. thesis, Faculty of Sciences, University of Lausanne, Switzerland (2004)

    Google Scholar 

  24. Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, B.: The role of syntactic and semantic locality of crossover in genetic programming. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 533–542. Springer, Heidelberg (2010)

    Google Scholar 

  25. Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R., Phong, D.N.: On the roles of semantic locality of crossover in genetic programming. Inf. Sci. 235, 195–213 (2013). Data-based Control. Decision, Scheduling and Fault Diagnostics

    Article  MathSciNet  MATH  Google Scholar 

  26. den Heijer, E., Eiben, A.E.: Evolving pop art using scalable vector graphics. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 48–59. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  27. den Heijer, E., Eiben, A.E.: Evolving art with scalable vector graphics. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 427–434. ACM (2011)

    Google Scholar 

  28. Baker, E., Seltzer, M.: Evolving line drawings. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 91–100. Morgan Kaufmann Publishers (1994)

    Google Scholar 

  29. Unemi, T., Soda, M.: An IEC-based support system for font design. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 968–973. IEEE (2003)

    Google Scholar 

  30. Schmitz, M.: genoTyp, an experiment about genetic typography. In: Proceedings of Generative Art 2004 (2004)

    Google Scholar 

  31. Pagliarini, L., Parisi, D.: Face-it project. In: Proceedings of XV Italian Congress on Experimental Psychology, pp. 38–41 (1996)

    Google Scholar 

  32. Alsing, R.: Genetic programming: Evolution of Mona Lisa (2008). http://rogeralsing.com/2008/12/07/genetic-programming-evolution-of-mona-lisa/

  33. Sims, K.: Artificial evolution for computer graphics, vol. 25(4), pp. 319–328. ACM (1991)

    Google Scholar 

  34. Lewis, M.: Evolutionary visual art and design. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music. Natural Computing Series, pp. 3–37. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  35. Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of development. Genet. Program Evolvable Mach. 8(2), 131–162 (2007)

    Article  Google Scholar 

  36. Secretan, J., Beato, N., D’Ambrosio, D.B., Rodriguez, A., Campbell, A., Folsom-Kovarik, J.T., Stanley, K.O.: Picbreeder: a case study in collaborative evolutionary exploration of design space. Evol. Comput. 19(3), 373–403 (2011)

    Article  Google Scholar 

  37. McCormack, J.: Open problems in evolutionary music and art. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 428–436. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  38. Jiarathanakul, P.: Ray marching distance fields in real-time on webgl. Technical report, Citeseer

    Google Scholar 

  39. Quilez, I.: Modeling with distance functions (2008). http://iquilezles.org/www/articles/distfunctions/distfunctions.htm

  40. Greenfield, G.R., et al.: Mathematical building blocks for evolving expressions. In: Bridges: Mathematical Connections in Art, Music, and Science, pp. 61–70. Tarquin Publications (2000)

    Google Scholar 

  41. Ventrella, J.J.: Evolving the mandelbrot set to imitate figurative art. In: Hingston, P.F., Barone, L.C., Michalewicz, Z. (eds.) Design by Evolution: Advances in Evolutionary Design. Natural Computing Series, pp. 145–167. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  42. Lutton, E., Cayla, E., Chapuis, J.: \( ArtiE-fract\): the artist’s viewpoint. In: Cagnoni, S., et al. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 510–521. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  43. Schmidhuber, J.: Low-complexity art. Leonardo, 97–103 (1997). JSTOR

    Google Scholar 

  44. Machado, P., Cardoso, A.: All the truth about NEvAr. Appl. Intell. 16(2), 101–118 (2002)

    Article  MATH  Google Scholar 

  45. Di Gesu, V., Starovoitov, V.: Distance-based functions for image comparison. Pattern Recogn. Lett. 20(2), 207–214 (1999)

    Article  MATH  Google Scholar 

  46. D’Agostino, R.B.: An omnibus test of normality for moderate and large size samples. Biometrika 58(2), 341–348 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  47. D’Agostino, R.B., Pearson, E.S.: Tests for departure from normality. empirical results for the distributions of b2 and b1. Biometrika 60(3), 613–622 (1973)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Re .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Re, A., Castelli, M., Vanneschi, L. (2016). A Comparison Between Representations for Evolving Images. In: Johnson, C., Ciesielski, V., Correia, J., Machado, P. (eds) Evolutionary and Biologically Inspired Music, Sound, Art and Design. EvoMUSART 2016. Lecture Notes in Computer Science(), vol 9596. Springer, Cham. https://doi.org/10.1007/978-3-319-31008-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31008-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31007-7

  • Online ISBN: 978-3-319-31008-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics