Skip to main content

Fuzzy Sets in Agriculture

  • Chapter
  • First Online:
Fuzzy Logic in Its 50th Year

Abstract

Agricultural modeling and management are complex conceptual processes, where a large number of variables are taken into consideration and interact for system analysis and decision making. Most of the processes in the agricultural sector include the uncertainty, ambiguity, incomplete information and human intuition characteristics. These processes are not only constrained by their environment (e.g., market, climate, seasons, consumer choices), but they are also highly influenced by human factors (stakeholders’ perceptions). Fuzzy sets are able to manage and represent uncertainty, assure that the incomplete information is valued and provide solutions to issues which are crucial in agriculture like fertilization, land degradation, soil erosion and climate variability during planting material selection in physiological analysis. Fuzzy sets have gained constantly increasing research interest in the last twenty years and have found great applicability in the agricultural domain, helping farmers to take right decisions for their cultivated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Food and Agriculture Organization: Investing in food security, p. 3. I/I1230E/1/11.09/1000, Italy (2009)

    Google Scholar 

  2. Popa, C.: Adoption of artificial intelligence in agriculture. Bull. UASVM Agric. Electron. 68(1), 284–293 (2011)

    Google Scholar 

  3. Dengel, A.: Special issue on artificial intelligence in agriculture. Künstl Intell. 27, 309–311 (2013). doi 10.1007/s13218-013-0275-y

    Google Scholar 

  4. Center, B., Verma, B.P.: Fuzzy logic for biological and agricultural systems. Artif. Intell. Rev. 12, 213–225 (1998)

    Article  MATH  Google Scholar 

  5. Dubey, S., Pandey, R.K., Gautam, S.S.: Literature review on fuzzy expert system in agriculture. Int. J. Soft Comput. Eng. (IJSCE) 2(6) (2013)

    Google Scholar 

  6. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision, processes. IEEE Trans. Syst. Man Cybern. 3, 28–44 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Azeem, M.F.: Fuzzy inference system—Theory and applications. InTech 518 (2012)

    Google Scholar 

  9. Huang, Y., Lan, Y., Thomson, S.J., Fang, A., Hoffmann, W.C., Lacey, R.E.: Development of soft computing and applications in agricultural and biological engineering. Comput. Electron. Agric. 71, 107–127 (2010)

    Article  Google Scholar 

  10. Bosma, R., van den Berg, J., Kaymak, U., Udo, H., Verreth, J.: A generic methodology for developing fuzzy decision models. Expert Syst. Appl. 39, 1200–1210 (2012)

    Article  Google Scholar 

  11. Djatkov, D., Effenberger, M., Lehner, A., Martinov, M., Tesic, M.: New method for assessing the performance of agricultural biogas plants. Renew. Energy 40, 104–112 (2011)

    Article  Google Scholar 

  12. Djatkov, D., Effenberger, M., Martinov, M.: Method for assessing and improving the efficiency of agricultural biogas plants based on fuzzy logic and expert systems. Appl. Energy 134, 163–175 (2014)

    Article  Google Scholar 

  13. Murmu, S., Biswas, S.: Application of fuzzy logic and neural network in crop classification: a review. Aquat. Procedia 4, 1203–1210 (2015)

    Article  Google Scholar 

  14. Zareiforoush, H., Minaei, S., Alizadeh, M.R., Banakar, A.: A hybrid intelligent approach based on computer vision and fuzzy logic for quality measurement of milled rice. Measurement 66, 26–34 (2015)

    Article  Google Scholar 

  15. Pandey, A., Prasad, R., Singh, V.P., Jha, S.K., Shukla, K.K.: Crop parameters estimation by fuzzy inference system using X-band scatterometer data. Adv. Space Res. 51, 905–911 (2013)

    Article  Google Scholar 

  16. Li, Q., Yan, J.: Assessing the health of agricultural land with emergy analysis and fuzzy logic in the major grain-producing region. Catena 99, 9–17 (2012)

    Article  Google Scholar 

  17. da Silva, A.F., Barbosa, A.P., Zimback, C.R.L., Landim, P.M.B., Soares, A.: Estimation of croplands using indicator kriging and fuzzy classification. Comput. Electron. Agric. 111, 1–11 (2015)

    Article  Google Scholar 

  18. Abbaspour-Gilandeh, Y., Sedghi, R.: Predicting soil fragmentation during tillage operation using fuzzy logic approach. J. Terrramech. 57, 61–69 (2015)

    Article  Google Scholar 

  19. Petkovic, D., Gocic, M., Trajkovic, S., Shamshirband, S., Motamedi, S., Hashim, R., Bonakdari, H.: Determination of the most influential weather parameters on reference evapotranspiration by adaptive neuro-fuzzy methodology. Comput. Electron. Agric. 114, 277–284 (2015)

    Article  Google Scholar 

  20. Prakash, C., Thakur, G.S.M.: Fuzzy based agriculture expert system for Soya-bean. In: International Conference on Computing Sciences WILKES100-ICCS2013, Jalandhar, Punjab, India (2013)

    Google Scholar 

  21. Zhang, J., Su, Y., Wu, J., Liang, H.: GIS based land suitability assessment for tobacco production using AHP and fuzzy set in Shandong province of China. Comput. Electron. Agric. 114, 202–211 (2015)

    Article  Google Scholar 

  22. Coulon-Leroy, C., Charnomordic, B., Thiollet-Scholtus, M., Guillaume, S.: Imperfect knowledge and data-based approach to model a complex agronomic feature—Application to vine vigor. Comput. Electron. Agric. 99, 135–145 (2013)

    Article  Google Scholar 

  23. Ceballos, M.R., Gorricho, J.L., Gamboa, O.P., Huerta, M.K., Rivas, D., Rodas, M.E.: Fuzzy system of irrigation applied to the growth of Habanero Pepper (Capsicum chinense Jacq.) under protected conditions in Yucatan, Mexico. Int. J. Distrib. Sens. Netw. 2015, 124–137 (2015). doi:10.1155/2015/123543

    Article  Google Scholar 

  24. Islam, N., Sadiq, R., Rodriguez, M.J., Francisque, A.: Evaluation of source water protection strategies: a fuzzy-based model. J. Environ. Manage. 121, 191–201 (2013)

    Article  Google Scholar 

  25. Giusti, E., Marsili-Libelli, S.: A Fuzzy Decision Support System for irrigation and water conservation in agriculture. Environ. Model Softw. 63, 73–86 (2015)

    Article  Google Scholar 

  26. Rossi, F., Nardino, M., Mannini, P., Genovesi, R.: IRRINET Emilia Romagna: online decision support on irrigation. Online agrometeological applications with decision support on the farm level. Cost Action 718, 99–102 (2004)

    Google Scholar 

  27. Binte Zinnat, S., Abdullah, D.: Design of a fuzzy logic based automated shading and irrigation system. In: 17th International Conference on Computer and Information Technology, 22–23 Dec 2014, Daffodil International University, Dhaka, Bangladesh (2014)

    Google Scholar 

  28. Trono, E.M., Guico, M.L., Labuguen, R., Navarro, A., Libatique, N.G., Tangonan, G.: Design and development of an integrated web-based system for tropical rainfall monitoring. Procedia Environ. Sci. 20, 305–314 (2014)

    Article  Google Scholar 

  29. Almeida, G., Vieira, J., Marques, A.S., Kiperstok, A., Cardoso, A.: Estimating the potential water reuse based on fuzzy reasoning. J. Environ. Manage. 128, 883–892 (2013)

    Article  Google Scholar 

  30. Liu, Y., Jiao, L., Liu, Y., He, J.: A self-adapting fuzzy inference system for the evaluation of agricultural land. Environ. Model Softw. 40, 226–234 (2013)

    Article  Google Scholar 

  31. Mawale, M.V., Chavan, V.: Fuzzy Inference System for productivity and fertility of soil. Int. J. Eng. Dev. Res. 2(3), 2321–9939 (2014)

    Google Scholar 

  32. Papadopoulos, A., Kalivas, D., Hatzichristos, T.: Decision support system for nitrogen fertilization using fuzzy theory. Comput. Electron. Agric. 78, 130–139 (2011)

    Article  Google Scholar 

  33. Kosko, B.: Fuzzy cognitive maps. Int. J. Man-Machine Stud. 24, 65–75 (1986)

    Article  MATH  Google Scholar 

  34. Kosko, B.: Neural Networks and Fuzzy Systems. Prentice-Hall, Englewood Cliffs (1992)

    MATH  Google Scholar 

  35. Papageorgiou, E.I. (ed.): Fuzzy Cognitive Maps for Applied Sciences and Engineering—From Fundamentals to Extensions and Learning Algorithms, Intelligent Systems Reference Library 54. Springer, Berlin (2014)

    Google Scholar 

  36. Papageorgiou, E.I., Aggelopoulou, K., Gemptos, T., Nanos, G.: Yield prediction in apples related to precision agriculture using fuzzy cognitive map learning approach. In: Computers and Electronics in Agriculture, vol. 91, pp. 19–29, December 2012 (2013)

    Google Scholar 

  37. Papageorgiou, E.I., Markinos, A., Gemptos, T.: Application of fuzzy cognitive maps for cotton yield management in precision farming. Expert Syst. Appl. 36, 12399–12413 (2009)

    Article  Google Scholar 

  38. Papageorgiou, E.I., Markinos, A., Gemptos, T.: Fuzzy cognitive map based approach for predicting yield in cotton crop production as a basis for decision support system in precision agriculture application. Appl. Soft Comput. 11(4), 3643–3657 (2011)

    Article  Google Scholar 

  39. Jayashree, S., Nikhil P., Papageorgiou E.I., Papageorgiou K.: Application of fuzzy cognitive maps in precision agriculture: a case study of coconut yield prediction in India. Neural Comput. Appl. (2015). doi:10.1007/s00521-015-1864-5

    Google Scholar 

  40. Halbrendt, J., Steven, A., Gray, Β., Crow, S., Radovich, T., Kimura, A.H., Tamang, B.B.: Differences in farmer and expert beliefs and the perceived impacts of conservation agriculture. Glob. Environ. Change 28, 50–62 (2014)

    Article  Google Scholar 

  41. Christen, B., Kjeldsen, C., Dalgaard, T., Martin-Ortega, J.: Can fuzzy cognitive mapping help in agricultural policy design and communication? Land Use Policy 45, 64–75 (2015)

    Article  Google Scholar 

  42. Zimmermann, H.J.: Advanced Review: Fuzzy set theory. Wiley, New York (2010). doi:10.1002/wics.82

    Google Scholar 

  43. Ross, T.: Fuzzy Logic in Engineering Applications. McGraw-Hill, New York (1995)

    MATH  Google Scholar 

  44. Yager, R., Filev, D.: Essentials of Fuzzy Modeling and Control. Wiley, New York (1994)

    Google Scholar 

  45. Tagarakis, A., Koundouras, S., Papageorgiou, E.I., Dikopoulou, Z., Fountas, S., Gemtos, T.A.: A fuzzy inference system to model grape quality in vineyards. Precis. Agric. Int. J. Adv. Precis. Agric. 15(5), 555–578 (2014)

    Google Scholar 

  46. Vitoriano, B., Montero, J., Ruan, D.: Decision Aid Models for Disaster Management and Emergencies, p. 325. Springer Science & Business Media (2013)

    Google Scholar 

  47. Arabacioglu, B.C.: Using fuzzy inference system for architectural space analysis. Appl. Soft Comput. 10(3), 926–937 (2010)

    Article  Google Scholar 

  48. Papageorgiou, E.I.: Learning algorithms for fuzzy cognitive maps—A review study. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(2), 150–163 (2012)

    Google Scholar 

  49. Dai, Z.W., Ollat, N., Gomès, E., Decroocq, S., Tandonnet, J.P., Bordenave, L., Pieri, P., Hil-bert, G., Kappel, C., van Leeuwen, C., Vivin, P., Delrot, S.: Ecophysiological, genetic, and molecular causes of variation in grape berry weight and composition. Am. J. Enol. Viticulture 62, 413–425 (2011)

    Article  Google Scholar 

  50. Ribéreau-Gayon, P., Dubourdieu, D., Donèche, B., Lonvaud, A.: Handbook of Enology, Microbiology of Wine and Vinification. Wiley, West Sussex (2006)

    Google Scholar 

  51. Ruffner, H.P.: Metabolism of tartaric and malic acids in Vitis: a review. Part B Vitis 21, 346–358 (1982)

    Google Scholar 

  52. van Leeuwen, C., Tregoat, O., Choné, X., Bois, B., Pernet, D., Gaudillère, J.-P.: Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? Journal International des Sciences de la Vigne et du Vin 43, 121–134 (2009)

    Google Scholar 

  53. Bramley, R.G.V., Trought, M.C.T., Praat, J.P.: Vineyard variability in Marlborough, New Zeland: characterizing variation. Aust. J. Grape Wine Res. 17, 72–78 (2011)

    Article  Google Scholar 

  54. Koundouras, S., Marinos, V., Gkoulioti, A., Kotseridis, Y., van Leeuwen, C.: Influence of vineyard location and vine water status on fruit maturation of nonirrigated cv. Agiorgitiko (Vitis vinifera L.). Effects on wine phenolic and aroma components. J. Agric. Food Chem. 54, 5077–5086 (2006)

    Article  Google Scholar 

  55. Kennedy, J.A., Saucier, C., Glories, Y.: Grape and wine phenolics: history and perspective. Am. J. Enol. Viticulture 57, 239–248 (2006)

    Google Scholar 

  56. Mazza, G., Francis, F.J.: Anthocyanins in grapes and grape products. Crit. Rev. Food Sci. Nutr. 35, 341–371 (1995)

    Article  Google Scholar 

  57. Sannakki, S.S., Rajpurohit, V.S., Arunkumar, R.: A survey on applications of fuzzy logic in agriculture. J. Comput. Appl. (JCA) 4(1) (2011)

    Google Scholar 

  58. Salleh, M., Nawi, N., Ghazali, R.: Uncertainty analysis using fuzzy sets for decision support system. Efficient Decision Support Systems—Practice and Challenges in Multidisciplinary Domains. InTech, pp. 273–290 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elpiniki I. Papageorgiou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Papageorgiou, E.I., Kokkinos, K., Dikopoulou, Z. (2016). Fuzzy Sets in Agriculture. In: Kahraman, C., Kaymak, U., Yazici, A. (eds) Fuzzy Logic in Its 50th Year. Studies in Fuzziness and Soft Computing, vol 341. Springer, Cham. https://doi.org/10.1007/978-3-319-31093-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31093-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31091-6

  • Online ISBN: 978-3-319-31093-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics