Skip to main content

On-line Evolution of Foraging Behaviour in a Population of Real Robots

  • Conference paper
  • First Online:
Book cover Applications of Evolutionary Computation (EvoApplications 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9598))

Included in the following conference series:

Abstract

This paper describes a study in evolutionary robotics conducted completely in hardware without using simulations. The experiments employ on-line evolution, where robot controllers evolve on-the-fly in the robots’ environment as the robots perform their tasks. The main issue we consider is the feasibility of tackling a non-trivial task in a realistic timeframe. In particular, we investigate whether a population of six robots can evolve foraging behaviour in one hour. The experiments demonstrate that this is possible and they also shed light on some of the important features of our evolutionary system. Further to the specific results we also advocate the system itself. It provides an example of a replicable and affordable experimental set-up for other researches to engage in research into on-line evolution in a population of real robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://robotsthatdream.eu.

  2. 2.

    The code for implementation is available on https://github.com/ci-group/Thymio_swarm.

References

  1. Bongard, J.: Evolutionary robotics. Comm. ACM 56(8), 74–85 (2013)

    Article  Google Scholar 

  2. Bredeche, N., Haasdijk, E., Eiben, A.E.: On-line, on-board evolution of robot controllers. In: Collet, P., Monmarché, N., Legrand, P., Schoenauer, M., Lutton, E. (eds.) Proceedings of the 9th International Conference on Artificial Evolution, pp. 110–121. Springer, Berlin (2009)

    Google Scholar 

  3. Bredeche, N., Montanier, J.M., Liu, W., Winfield, A.F.: Environment-driven distributed evolutionary adaptation in a population of autonomous robotic agents. Math. Comput. Model. Dyn. Syst. 18(1), 101–129 (2012)

    Article  MATH  Google Scholar 

  4. Capi, G.: Multiobjective evolution of neural controllers and task complexity. IEEE Trans. Robot. 23(6), 1225–1234 (2007)

    Article  Google Scholar 

  5. Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.: Evolutionary robotics: what, why, and where to. Front. Robot. AI 2(4) (2015)

    Google Scholar 

  6. Eiben, A.E., Haasdijk, E., Bredeche, N.: Embodied, on-line, on-board evolution for autonomous robotics. In: Levi, P., Kernbach, S. (eds.) Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution, pp. 361–382. Springer, Heidelberg (2010). http://www.springer.com/engineering/mathematical/book/978-3-642-11691-9

    Google Scholar 

  7. Heinerman, J., Rango, M., Eiben, A.: Evolution, individual learning, and social learning in a swarm of real robots. In: Proceedings of the 2015 IEEE International Conference on Evolvable Systems (ICES). IEEE (2015, to appear)

    Google Scholar 

  8. Ishiguro, A., Tokura, S., Kondo, T., Uchikawa, Y., Eggenberger, P.: Reduction of the gap between simulated and real environments in evolutionary robotics: a dynamically-rearranging neural network approach. In: IEEE SMC 1999 Conference Proceedings, IEEE International Conference on Systems, Man, and Cybernetics, vol. 3, pp. 239–244. IEEE (1999)

    Google Scholar 

  9. Morán, F., Merelo, J.J., Moreno, A., Chacon, P. (eds.): ECAL 1995. LNCS, vol. 929. Springer, Heidelberg (1995)

    Google Scholar 

  10. Nehmzow, U.: Physically embedded genetic algorithm learning in multi-robot scenarios: the pega algorithm. In: Prince, C., Demiris, Y., Marom, Y., Kozima, H., Balkenius, C. (eds.) Proceedings of The Second International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, No. 94 in Lund University Cognitive Studies, LUCS, Edinburgh, UK, August 2002

    Google Scholar 

  11. Nelson, A.L., Barlow, G.J., Tsidis, L.: Fitness functions in evolutionary robotics: a survey and analysis. Robot. Autonom. Syst. 57(4), 345–370 (2009). http://www.sciencedirect.com/science/article/B6V16-4TTMJV3-1/2/2549524d8e0f3982730659e49ad3fa75

    Article  Google Scholar 

  12. Nolfi, S.: Evolving non-trivial behaviors on real robots: a garbage collecting robot. Robot. Autonom. Syst. 22(3), 187–198 (1997)

    Article  Google Scholar 

  13. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press, Cambridge (2000)

    Google Scholar 

  14. Riedo, F., Chevalier, M.S.D., Magnenat, S., Mondada, F.: Thymio II, a robot that grows wiser with children. In: 2013 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), pp. 187–193. IEEE (2013)

    Google Scholar 

  15. Simoes, E., Dimond, K.R.: An evolutionary controller for autonomous multi-robot systems. In: 1999 IEEE International Conference on Systems, Man, and Cybernetics, IEEE SMC 1999 Conference Proceedings, vol. 6, pp. 596–601. IEEE (1999)

    Google Scholar 

  16. Sprinkhuizen-Kuyper, I.G., Kortmann, R., Postma, E.O.: Fitness functions for evolving box-pushing behaviour. In: Proceedings of the Twelfth Belgium-Netherlands Artificial Intelligence Conference, pp. 275–282 (2000)

    Google Scholar 

  17. Usui, Y., Arita, T.: Situated and embodied evolution in collective evolutionary robotics. In: Proceedings of the 8th International Symposium on Artificial Life and Robotics, pp. 212–215 (2003)

    Google Scholar 

  18. Vargas, P., Paolo, E.D., Harvey, I., Husbands, P. (eds.): The Horizons of Evolutionary Robotics. MIT Press, Cambridge (2014)

    Google Scholar 

  19. Watson, R., Ficiei, S., Pollack, J.B., et al.: Embodied evolution: Embodying an evolutionary algorithm in a population of robots. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 99, vol. 1, pp. 335–342. IEEE (1999)

    Google Scholar 

Download references

Acknowledgements

This work was made possible by the European Union FET Proactive Initiative Knowing, Doing, Being: Cognition Beyond Problem Solving, funding the Deferred Restructuring of Experience in Autonomous Machines (DREAM) project under grant agreement 640891.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Heinerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Heinerman, J., Zonta, A., Haasdijk, E., Eiben, A.E. (2016). On-line Evolution of Foraging Behaviour in a Population of Real Robots. In: Squillero, G., Burelli, P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science(), vol 9598. Springer, Cham. https://doi.org/10.1007/978-3-319-31153-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31153-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31152-4

  • Online ISBN: 978-3-319-31153-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics