Abstract
In Simulation-based Evolutionary Multi-objective Optimization (EMO) the available time for optimization usually is limited. Since many real-world optimization problems are stochastic models, the optimization algorithm has to employ a noise compensation technique for the objective values. This article analyzes Dynamic Resampling algorithms for handling the objective noise. Dynamic Resampling improves the objective value accuracy by spending more time to evaluate the solutions multiple times, which tightens the optimization time limit even more. This circumstance can be used to design Dynamic Resampling algorithms with a better sampling allocation strategy that uses the time limit. In our previous work, we investigated Time-based Hybrid Resampling algorithms for Preference-based EMO. In this article, we extend our studies to general EMO which aims to find a converged and diverse set of alternative solutions along the whole Pareto-front of the problem. We focus on problems with an invariant noise level, i.e. a flat noise landscape.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bader, J., Zitzler, E.: HypE: An algorithm for fast hypervolume-based many-objective optimization. In: Computer Engineering and Networks Laboratory (TIK), ETH Zurich (2008)
Bartz-Beielstein, T., Blum, D., Branke, J.: Particle swarm optimization and sequential sampling in noisy environments. In: Doerner, K.F., Gendreau, M., Greistorfer, P., Gutjahr, W., Hartl, R.F., Reimann, M. (eds.) Metaheuristics - Progress in Complex Systems Optimization. Operations Research/Computer Science Interfaces Series, vol. 39, pp. 261–273. Springer, Heidelberg (2007)
Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007). ISSN 1049–3301
Branke, J., Schmidt, C.: Sequential sampling in noisy environments. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 202–211. Springer, Heidelberg (2004)
Chen, C.-H., Lee, L.H.: Stochastic Simulation Optimization - An Optimal Computing Budget Allocation. World Scientific Publishing Company, Hackensack (2010). ISBN 978-981-4282-64-2
Coello Coello, C.A., Reyes Sierra, M.: A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 688–697. Springer, Heidelberg (2004)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Di Pietro, A., While, L., Barone, L.: Applying evolutionary algorithms to problems with noisy, time-consuming fitness functions. In: Proceedings of the Congress on Evolutionary Computation 2004, vol. 2, pp. 1254–1261 (2004)
Enginarlar, E., Li, J., Meerkov, S.M.: How lean can lean buffers be? IIE Trans. 37(5), 333–342 (2005)
Fieldsend, J.E., Everson, R.M.: The rolling tide evolutionary algorithm: a multiobjective optimizer for noisy optimization problems. IEEE Trans. Evol. Comput. 19(1), 103–117 (2015). ISSN 1089–778X
Goh, C.K., Tan, K.C.: Evolutionary Multi-objective Optimization in Uncertain Environments: Issues and Algorithms. Springer, Heidelberg (2009). ISBN 978-3-540-95976-2
Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005). ISSN 1089–778X
Lee, L.H., Chew, E.P.: Design sampling and replication assignment under fixed computing budget. J. Syst. Sci. Syst. Eng. Syst. Eng. Soc. China 14(3), 289–307 (2005). ISSN 1004–3756
Papadopoulos, C.T., O’Kelly, M.E.J., Vidalis, M.J., Spinellis, D.: Analysis and Design of Discrete Part Production Lines. Springer Optimization and its Application Series, vol. 31. Springer, New York (2009). ISBN 978-1-4419-2797-2
Park, T., Ryu, K.R.: Accumulative sampling for noisy evolutionary multi-objective optimization. In: Proceedings of the Conference on Genetic and Evolutionary Computation, Dublin, Ireland, pp. 793–800, ISBN 978-1-4503-0557-0 (2011)
Siegmund, F.: Sequential sampling in noisy multi-objective evolutionary optimization. Master thesis, University of Skövde, Sweden and Karlsruhe Institute of Technology, Germany (2009). http://urn.kb.se/resolve?urn=urn: nbn: se: his: diva-3390
Siegmund, F., Ng, A.H.C., Deb, K.: A comparative study of dynamic resampling strategies for guided evolutionary multi-objective optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation 2013, Cancún, Mexico, pp. 1826–1835. ISBN 978-1-4799-0454-9 (2013)
Siegmund, F., Ng, A.H.C., Deb, K.: Hybrid dynamic resampling for guided evolutionary multi-objective optimization. In: Proceedings of the 8th International Conference on Evolutionary Multi-Criterion Optimization, Guimarães, Portugal, pp. 366–380. ISBN 978-3-319-15934-8 (2015)
Siegmund, F., Ng, A.H.C., Deb, K.: Dynamic resampling for preference-based evolutionary multi-objective optimization of stochastic systems. Submitted to European Journal of Operational Research (2016). http://www.egr.msu.edu/ kdeb/papers/c2015020.pdf
Siegmund, F., Ng, A.H.C., Deb, K.: Standard Error Dynamic Resampling for Preference-based Evolutionary Multi-objective Optimization. Submitted to Computers & Operations Research (2016). http://www.egr.msu.edu/ kdeb/papers/c2015021.pdf
Syberfeldt, A., Ng, A.H.C., John, R.I., Moore, P.: Evolutionary optimisation of noisy multi-objective problems using confidence-based dynamic resampling. Eur. J. Oper. Res. 204(3), 533–544 (2010). ISSN 0377–2217
Tan, K.C., Goh, C.K.: Handling uncertainties in evolutionary multi-objective optimization. In: Zurada, J.M., Yen, G.G., Wang, J. (eds.) Computational Intelligence: Research Frontiers. LNCS, vol. 5050, pp. 262–292. Springer, Heidelberg (2008)
Tsoularis, A.: Analysis of logistic growth models. Res. Lett. Inf. Math. Sci. 2, 23–46 (2001). ISSN 0377–2217
Van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. Ph.D. thesis, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio, USA (1999)
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 8(2), 173–195 (2000)
Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - a comparative case study. In: Schoenauer, M., Schwefel, H.-P., Eiben, A.E., Bäck, T. (eds.) PPSN 1998. LNCS, vol. 1498, p. 292. Springer, Heidelberg (1998)
Acknowledgments
This study was partially funded by the Knowledge Foundation, Sweden, through the BlixtSim and IDSS projects. The authors gratefully acknowledge their provision of research funding.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Siegmund, F., Ng, A.H.C., Deb, K. (2016). Hybrid Dynamic Resampling Algorithms for Evolutionary Multi-objective Optimization of Invariant-Noise Problems. In: Squillero, G., Burelli, P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science(), vol 9598. Springer, Cham. https://doi.org/10.1007/978-3-319-31153-1_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-31153-1_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31152-4
Online ISBN: 978-3-319-31153-1
eBook Packages: Computer ScienceComputer Science (R0)