Abstract
This paper presents a method for accelerating the evaluation of individuals in Grammatical Evolution. The method is applied for identification and modeling problems, where, in order to obtain the fitness value of one individual, we need to compute a mathematical expression for different time events. We propose to evaluate all necessary values of each individual using only one mathematical Java code. For this purpose we take profit of the flexibility of grammars, which allows us to generate Java compilable expressions. We test the methodology with a real problem: modeling glucose level on diabetic patients. Experiments confirms that our approach (compilable phenotypes) can get up to 300x reductions in execution time.
J.M. Colmenar—Support from Spanish Government Grant TIN2014-54806-R is acknowledged by ABSyS group.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Publishers, Norwell, MA, USA (2000)
Hidalgo, J.I., Lanchares, J., Ibarra, A., Hermida, R.: A hybrid evolutionary algorithm for multi-FPGA systems design. In: Proceedings of the Euromicro Symposium on Digital System Design, pp. 60–67 (2002)
Langdon, W.B.: Graphics processing units and genetic programming: an overview. Soft Comput. 15, 1657–1669 (2011)
Pospichal, P., Murphy, E., O’Neill, M., Schwarz, J., Jaros, J.: Acceleration of GE using GPUs: computational intelligence on consumer games and graphics hardware. In: Companion Proceedings of the 13th GECCO, pp. 431–438 (2011)
Hu, T., Harding, S., Banzhaf, W.: Variable population size and evolution acceleration: a case study with a parallel evolutionary algorithm. Genet. Program Evolvable Mach. 11(2), 205–225 (2010)
Arenas, M., Collet, P., Eiben, A.E., Jelasity, M., Merelo, J.J., Paechter, B., Preuß, M., Schoenauer, M.: A framework for distributed evolutionary algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 665–675. Springer, Heidelberg (2002)
Harding, S.L., Banzhaf, W.: Distributed genetic programming on GPUs using CUDA. In: Workshop on Parallel Architectures and Bioinspired Algorithms, Raleigh, USA (2009)
O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Kluwer Academic Publishers, Norwell (2003)
Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming (2008). Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk
Breidecker, R.: JEval. Java library for functional expression parsing and evaluation (2007). http://sourceforge.net/projects/jeval/
JEXL: Java EXpression Language (2015). http://commons.apache.org/proper/commons-jexl/
Adaptive and Bioinspired Systems Group: ABSys JECO (Java Evolutionary COmputation) library (2015). https://github.com/ABSysGroup/jeco
O’Neill, M., Hemberg, E., Gilligan, C., Bartley, E., McDermott, J., Brabazon, A.: GEVA - Grammatical Evolution in Java. Technical report, Natural Computing Research and Applications Group - UCD Complex and Adaptive Systems Laboratory, University College Dublin, Ireland (2008)
Hidalgo, J.I., Colmenar, J.M., Risco-Martin, J.L., Cuesta-Infante, A., Maqueda, E., Botella, M., Rubio, J.A.: Modeling glycemia in humans by means of Grammatical Evolution. Appl. Soft Comput. 20, 40–53 (2014)
AIDA: AIDA diabetic software simulator (2011). http://www.2aida.org/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Colmenar, J.M. et al. (2016). Compilable Phenotypes: Speeding-Up the Evaluation of Glucose Models in Grammatical Evolution. In: Squillero, G., Burelli, P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science(), vol 9598. Springer, Cham. https://doi.org/10.1007/978-3-319-31153-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-31153-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31152-4
Online ISBN: 978-3-319-31153-1
eBook Packages: Computer ScienceComputer Science (R0)