Abstract
A memory-enabled program representation in strongly-typed Genetic Programming (GP) is compared against the standard representation in a number of financial time-series modelling tasks. The paper first presents a survey of GP systems that utilise memory. Thereafter, a number of simulations show that memory-enabled programs generalise better than their standard counterparts in most datasets of this problem domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer-Verlag, Heidelberg (2002)
Cramer, N.L.: A representation for the adaptive generation of simple sequential programs. In: Grefenstette, J.J. (ed.), Proceedings of an International Conference on Genetic Algorithms and the Applications, Carnegie-Mellon University, pp. 183–187. Pittsburgh, PA, USA, 24–26 July 1985
Koza, J.: Genetic Programming: on the programming of computers by means of natural selection. MIT Press, Cambridge, MA (1992)
Koza, J.: Genetic Programming II: automatic discovery of reusable programs. MIT Press, Cambridge, MA (1994)
Montana, D.J.: Strongly typed genetic programming. BBN Technical Report #7866, Bolt Beranek and Newman Inc, 10 Moulton Street, Cambridge, MA 02138, USA, March 1994
Huelsbergen, L.: Toward simulated evolution of machine language iteration. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L., eds.: Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford University, CA, USA, pp. 315–320. MIT Press, 28–31 July 1996
Kirshenbaum, E.: Genetic programming with statically scoped local variables. Technical Report HPL-2000-106, Hewlett Packard Laboratories, Palo Alto, 11 August 2000
Conrads, M., Nordin, P., Banzhaf, W.: Speech sound discrimination with genetic programming. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, p. 113. Springer, Heidelberg (1998)
Agapitos, A., Lucas, S.: Evolving a statistics class using object oriented evolutionary programming. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 291–300. Springer, Heidelberg (2007)
Agapitos, A., Togelius, J., Lucas, S.M.: Evolving controllers for simulated car racing using object oriented genetic programming. In: Proceedings of the Genetic and Evolutionay Computation Conference (2007)
Agapitos, A., Togelius, J., Lucas, S.M.: Multiobjective techniques for the use of state in genetic programming applied to simulated car racing. In: Proceedings of IEEE CEC, pp. 1562–1569 (2007)
Poli, R., McPhee, N.F., Citi, L., Crane, E.: Memory with memory in genetic programming. J. Artif. Evol. Appl. 2009, 429–433 (2009)
Teller, A.: Turing completeness in the language of genetic programming with indexed memory. In: Proceedings of the IEEE World Congress on Computational Intelligence. vol. 1, Orlando, Florida, USA, pp. 136–141. IEEE Press (27–29 June 1994) (1994)
Teller, A.: The evolution of mental models. In: Kinnear Jr., K.E. (ed.) Advances in Genetic Programming. MIT Press, Cambridge (1994)
Jannink, J.: Cracking and co-evolving randomizers. In: Kinnear Jr., K.E. (ed.) Advances in Genetic Programming, pp. 425–443. MIT Press, Cambridge (1994)
Teller, A., Veloso, M.: A controlled experiment: Evolution for learning difficult image classification. In: Pinto-Ferreira, C., Mamede, N.J. (eds.) Progress in Artificial Intelligence. LNCS, vol. 990, pp. 165–176. Springer, Heidelberg (1995)
Teller, A., Veloso, M.: Algorithm evolution for face recognition: What makes a picture difficult. In: International Conference on Evolutionary Computation, Perth, Australia, pp. 608–613. IEEE Press, 1–3 December 1995
Teller, A., Veloso, M.: Program evolution for data mining. Int. J. Expert Syst. 8(3), 216–236 (1995)
Andre, D.: Evolution of mapmaking ability: Strategies for the evolution of learning, planning, and memory using genetic programming. In: Proceedings of the IEEE WCCI. vol. 1, pp. 250–255. Florida, USA (27–29 June 1994) (1994)
Brave, S.: The evolution of memory and mental models using genetic programming. In Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L., eds.: Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford University, CA, USA, MIT Press (28–31 July 1996) 261–266
Haynes, T.D., Wainwright, R.L.: A simulation of adaptive agents in hostile environment. In: George, K.M., Carroll, J.H., Deaton, E., Oppenheim, D., Hightower, J. (eds.) Proceedings of the 1995 ACM Symposium on Applied Computing, pp. 318–323. USA, ACM Press, Nashville (1995)
Langdon, W.B.: Genetic Programming and Data Structures: Genetic Programming + Data Structures = Automatic Programming! vol. 1 of Genetic Programming. Kluwer, Boston, 24 April 1998
Bruce, W.S.: Automatic generation of object-oriented programs using genetic programming. In: GP 1996: Proceedings of the 1st Annual Conference
Nordin, P., Banzhaf, W.: Programmatic compression of images and sound. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.): Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford University, CA, USA, pp. 345–350. MIT Press, 28–31 July 1996
Spector, L., Luke, S.: Cultural transmission of information in genetic programming. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.): Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford University, CA, USA, pp. 209–214. MIT Press, 28–31 July 1996
Koza, J.R., Andre, D., Bennett III., F.H., Keane, M.: Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan Kaufman
O’Neill, M., Ryan, C.: Investigations into memory in grammatical evolution. In: GECCO 2002, (ed.), pp. 141–144 (2002)
Agapitos, A., Dyson, M., Lucas, S.M., Sepulveda, F.: Learning to recognise mental activities: genetic programming of stateful classifiers for brain-computer interfacing. In: GECCO 2008: Proceedings of the 10th annual conference on Genetic and evolutionary computation (2008)
Agapitos, A., O’Neill, M., Brabazon, A., Theodoridis, T.: Learning environment models in car racing using stateful genetic programming. In: Proceedings of the IEEE Conference on Computational Intelligence and Games, Seoul, South Korea, pp. 219–226. IEEE (31 August - 3 September 2011) (2011)
Agapitos, A., O’Neill, M., Brabazon, A.: Stateful program representations for evolving technical trading rules. In: GECCO 2011: Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation (2011)
Iba, H., de Garis, H., Sato, T.: Temporal data processing using genetic programming. In: Eshelman, L. (ed.): Genetic Algorithms: Proceedings of the Sixth International Conference (ICGA95), pp. 279–286, 15–19 July 1995
Sharman, K.C., Esparcia Alcazar, A.I., Li, Y.: Evolving signal processing algorithms by genetic programming. In: Zalzala, A.M.S. (ed.): First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, GALESIA. vol. 414, pp. 473–480. Sheffield, UK, IEE, 12–14 September 1995
Alfaro-Cid, E., Sharman, K., Esparcia-Alcazar, A.I.: Genetic programming and serial processing for time series classification. Evol. Comput. 22(2), 265–285 (2014)
Brabazon, A., O’Neill, M.: Biologically Inspired Algorithms for Financial Modelling. Natural Computing Series. Springer, Heidelberg (2006)
Tsang, E.P.K., Li, J., Markose, S., Er, H., Salhi, A., Lori, G.: EDDIE in financial decision making. J. Manage. Econ. 20, 101–112 (2000)
Acknowledgement
This publication has emanated from research conducted with the financial support of Science Foundation Ireland under Grant Number 08/SRC/FM1389.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Agapitos, A., Brabazon, A., O’Neill, M. (2016). Genetic Programming with Memory For Financial Trading. In: Squillero, G., Burelli, P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science(), vol 9597. Springer, Cham. https://doi.org/10.1007/978-3-319-31204-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-31204-0_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31203-3
Online ISBN: 978-3-319-31204-0
eBook Packages: Computer ScienceComputer Science (R0)