Abstract
This paper presents a spatially-structured evolutionary algorithm (EA) to procedurally generate game maps of different levels of difficulty to be solved, in Gravityvolve!, a physics-based simulation videogame that we have implemented and which is inspired by the n-body problem, a classical problem in the field of physics and mathematics. The proposal consists of a steady-state EA whose population is partitioned into three groups according to the difficulty of the generated content (hard, medium or easy) which can be easily adapted to handle the automatic creation of content of diverse nature in other games. In addition, we present three fitness functions, based on multiple criteria (i.e., intersections, gravitational acceleration and simulations), that were used experimentally to conduct the search process for creating a database of maps with different difficulty in Gravityvolve!.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Wikipedia. Accessed on 17th of January, 2016.
References
Lara-Cabrera, R., Cotta, C., Fernández-Leiva, A.: An analysis of the structure and evolution of the scientific collaboration network of computer intelligence in games. Phys. A Stat. Mech. Appl. 395, 523–536 (2014)
Togelius, J., Champandard, A.J., Lanzi, P.L., Mateas, M., Paiva, A., Preuss, M., Stanley, K.O.: Procedural content generation: goals, challenges and actionable steps. In: Lucas, S.M., Mateas, M., Preuss, M., Spronck, P., Togelius, J. (eds.) Artificial and Computational Intelligence in Games. Dagstuhl Follow-Ups, vol. 6, pp. 61–75. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)
Hendrikx, M., Meijer, S., Van Der Velden, J., Iosup, A.: Procedural content generation for games: a survey. ACM Trans. Multimed. Comput. Commun. Appl. (TOMCCApP) 9(1), 1–22 (2013)
Shaker, N., Togelius, J., Nelson, M.J.: Procedural Content Generation in Games: A Textbook and an Overview of Current Research. Springer, New York (2014)
Rivello, S.A.: Developing physics-based games with adobe flash professional EDGE, article 7, April 2010. Accessed 15 Jan 2015
Shaker, M., Sarhan, M.H., Naameh, O.A., Shaker, N., Togelius, J.: Automatic generation and analysis of physics-based puzzle games. In: 2013 IEEE Conference on Computational Inteligence in Games (CIG), Niagara Falls, ON, Canada, 11–13 August 2013, pp. 1–8. IEEE (2013)
Preuss, M., Liapis, A., Togelius, J.: Searching for good and diverse game levels. In: 2014 IEEE Conference on Computational Intelligence and Games (CIG), pp. 1–8, August 2014
Lara-Cabrera, R., Fernández-Leiva, A.J.: Gravityvolve!
Togelius, J., Yannakakis, G.N., Stanley, K.O., Browne, C.: Search-based procedural content generation: a taxonomy and survey. IEEE Trans. Comput. Intell. AI Games 3(3), 172–186 (2011)
Togelius, J., Yannakakis, G.N., Stanley, K.O., Browne, C.: Search-based procedural content generation: a taxonomy and survey. IEEE Trans. Comput. Intellig. AI Games 3(3), 172–186 (2011)
Yannakakis, G., Togelius, J.: A panorama of artificial and computational intelligence in games. IEEE Trans. Comput. Intell. AI Games PP(99), 1 (2014)
Shaker, N., Yannakakis, G.N., Togelius, J.: Towards automatic personalized content generation for platform games. In: AIIDE (2010)
Pedersen, C., Togelius, J., Yannakakis, G.N.: Modeling player experience in super mario bros. In: IEEE Symposium on Computational Intelligence and Games, 2009, CIG 2009, pp. 132–139. IEEE (2009)
Togelius, J., Preuss, M., Yannakakis, G.N.: Towards multiobjective procedural map generation. In: Proceedings of the 2010 Workshop on Procedural Content Generation in Games, vol. 3. ACM (2010)
Togelius, J., Preuss, M., Beume, N., Wessing, S., Hagelback, J., Yannakakis, G.N.: Multiobjective exploration of the Starcraft map space. In: 2010 IEEE Symposium on Computational Intelligence and Games (CIG), pp. 265–272. IEEE (2010)
Togelius, J., De Nardi, R., Lucas, S.M.: Towards automatic personalised content creation for racing games. In: IEEE Symposium on Computational Intelligence and Games, 2007, CIG 2007, pp. 252–259. IEEE (2007)
Ferreira, L., Toledo, C.: A search-based approach for generating angry birds levels. In: 2014 IEEE Conference on Computational Intelligence and Games (CIG), pp. 1–8 (2014)
Lara-Cabrera, R., Cotta, C., Fernández-Leiva, A.: On balance and dynamism in procedural content generation with self-adaptive evolutionary algorithms. Nat. Comput. 13(2), 157–168 (2014)
Lara-Cabrera, R., Cotta, C.: Geometrical vs. topological measures for the evolution of aesthetic maps in a RTS game. Entertainment Comput. 5(4), 251–258 (2014)
Toussaint, G.T.: A graph-theoretic primal sketch. In: Toussaint, G.T. (ed.) Computational Morphology, pp. 229–260. Elsevier, Amsterdam (1988)
Frade, M., de Vega, F.F., Cotta, C.: Evolution of artificial terrains for video games based on obstacles edge length. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)
Frade, M., de Vega, F., Cotta, C.: Automatic evolution of programs for procedural generation of terrains for video games. Soft. Comput. 16(11), 1893–1914 (2012)
Hom, V., Marks, J.: Automatic design of balanced board games. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE), pp. 25–30 (2007)
Hastings, E.J., Guha, R.K., Stanley, K.O.: Automatic content generation in the Galactic Arms Race video game. IEEE Trans. Comput. Intell. AI Games 1(4), 245–263 (2009)
Hastings, E.J., Guha, R.K., Stanley, K.O.: Evolving content in the Galactic Arms Race video game. In: IEEE Symposium on Computational Intelligence and Games, 2009, CIG 2009, pp. 241–248. IEEE (2009)
Collins, K.: An introduction to procedural music in video games. Contemp. Music Rev. 28(1), 5–15 (2009)
Font, J.M., Mahlmann, T., Manrique, D., Togelius, J.: A card game description language. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 254–263. Springer, Heidelberg (2013)
Onuczko, C., Szafron, D., Schaeffer, J., Cutumisu, M., Siegel, J., Waugh, K., Schumacher, A.: Automatic story generation for computer role-playing games. In: AIIDE, pp. 147–148 (2006)
van der Linden, R., Lopes, R., Bidarra, R.: Procedural generation of dungeons. IEEE Trans. Comput. Intell. AI Games 6(1), 78–89 (2014)
Ashlock, D., Lee, C., McGuinness, C.: Search-based procedural generation of maze-like levels. IEEE Trans. Comput. Intell. AI Games 3(3), 260–273 (2011)
Plans, D., Morelli, D.: Experience-driven procedural music generation for games. IEEE Trans. Comput. Intell. AI Games 4(3), 192–198 (2012)
The physical travelling salesman problem. Accessed 10 December 2015
Perez, D., Powley, E.J., Whitehouse, D., Rohlfshagen, P., Samothrakis, S., Cowling, P.I., Lucas, S.M.: Solving the physical traveling salesman problem: tree search and macro actions. IEEE Trans. Comput. Intellig. AI Games 6(1), 31–45 (2014)
Powley, E., Whitehouse, D., Cowling, P.: Monte carlo tree search with macro-actions and heuristic route planning for the physical travelling salesman problem. In: IEEE Conference on Computational Intelligence and Games (CIG), September 2012, pp. 234–241 (2012)
Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)
Kortemeyer, G., Tan, P., Schirra, S.: A slower speed of light: developing intuition about special relativity with games. In: International Conference on the Foundations of Digital Games, Chania, Crete, Greece, 14–17 May 2013, pp. 400–402 (2013)
Aarseth, S.J., Aarseth, S.J.: Gravitational N-Body Simulations: Tools and Algorithms. Cambridge University Press, Cambridge (2003)
Acknowledgments
This work has been partially funded by Spanish MICINN under project UMA-EPHEMECH (http://blog.epheme.ch) (TIN2014-56494-C4-1-P), by Junta de Andalucía under project P10-TIC-6083 (DNEMESIS (http://dnemesis.lcc.uma.es/wordpress/)) and Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Lara-Cabrera, R., Gutierrez-Alcoba, A., Fernández-Leiva, A.J. (2016). A Spatially-Structured PCG Method for Content Diversity in a Physics-Based Simulation Game. In: Squillero, G., Burelli, P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science(), vol 9597. Springer, Cham. https://doi.org/10.1007/978-3-319-31204-0_42
Download citation
DOI: https://doi.org/10.1007/978-3-319-31204-0_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31203-3
Online ISBN: 978-3-319-31204-0
eBook Packages: Computer ScienceComputer Science (R0)