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Abstract. This paper presents a spatially-structured evolutionary al-
gorithm (EA) to procedurally generate game maps of different levels
of difficulty to be solved, in Gravityvolve!, a physics-based simulation
videogame that we have implemented and which is inspired by the n-
body problem, a classical problem in the field of physics and mathe-
matics. The proposal consists of a steady-state EA whose population is
partitioned into three groups according to the difficulty of the generated
content (hard, medium or easy) which can be easily adapted to handle
the automatic creation of content of diverse nature in other games. In ad-
dition, we present three fitness functions, based on multiple criteria (i.e:,
intersections, gravitational acceleration and simulations), that were used
experimentally to conduct the search process for creating a database of
maps with different difficulty in Gravityvolve!.

Keywords: Content creation, Evolutionary algorithms, physics-based game,
human evaluation

1 Introduction and motivation

The economic costs of producing a video game are very high: the development
is a slow process that requires a large team of heterogeneous professionals who,
in addition, are required to be highly qualified and specialized. Therefore, any
improvement that is able to optimize both the time and resources required to
create a video game is always welcome.

According to a recent analysis published in [1], the field of computational in-
telligence in video games is a vibrant, active field, which attracts new researchers
each year and generates new publications. There has been a steady growth in
the number of authors, which was accentuated mid-decade 2000–2010. Moreover,
the number of publications per year from the community has been increasing
since 2005, thus supporting the continued growth of the community.

One of the most promising areas in this field is Procedural Content Gener-
ation (PCG) which consists of generating game content through algorithms in-
stead of creating it by hand, and refers to each component that makes up a video



game except from the behaviour of the non-playable characters (NPCs) [2, 3].
Some examples of content susceptible to generation are maps, terrains, weapons,
items, music or even the game’s rules [4].

There are many advantages of producing video game content algorithmically
using PCG techniques. In the first place, it allows us to substantially reduce
the memory consumption of the game, although nowadays it should be seen as a
secondary improvement, it was the main reason for the research and development
of such techniques. Another important reason is the high cost of generating
some game content manually, as we have already mentioned. Additionally, the
game content can be automatically adapted to given criteria, such as the player
ability, in such a way that the game offers the player a continuous challenge. If
the algorithm is able to generate the content at the same time as the player is
playing the game then we are able to create infinite games which offer a different
game experience each time the player starts a new game.

It is well known that games can be catalogued according to a set of different
genres whose frontiers are usually fuzzy and intersect with the space of other
game genre, and it is not difficult to find games simultaneously catalogued, as
belonging to distinct genres. In the last few years, the so-called physics-based
simulation games (PbSGs) have emerged as one of the most exciting classes of
games in the video games universe as developers are required to simulate real
life physics with the aim of providing more realism and, as a consequence, to
create more believable games. This opens new lines of research up as stated in [5]
“Physics-based gaming can give your game development repertoire a huge boost,
enabling sandbox-style game mechanics and emergent gameplay.” In general,
PbSGs (e.g., Angry Birds or Crayon Physics, to name a couple) are easy to play
and provide simple game mechanics, but they introduce a number of challenging
problems like, unfortunately (or fortunately), the movements of the rigid bodies
have to be perfectly simulated which is not an easy task as these are subjected
to real Physics Laws and to the interaction with the environment (represented
as the game world). As a consequence of all the possible interactions, between
all the game objects and the game scenario itself, the number of new possible
states (i.e., movements) is huge (in fact, usually infinite) and even unknown a
priori. Therefore, the only way to proceed from one state of the game to the
following one is to simulate the moves realistically, and this is mandatory as one
needs to measure the quality of the state transition (i.e., movements).

In spite of the research interest of PbSGs, generating content for physics-
based simulation games is an area that has been explored timidly and, as far as
we know, only [6] uses Grammatical Evolution to automatically generate levels
for a clone of Cut the Rope, a commercial physics-based puzzle game.

Not to mention that PCG algorithms must ensure that the generated content
meets some criteria in a way similar to if it had been generated by hand, but
this goal is not always easy to satisfy and, in addition, it is difficult to find good
mechanisms to evaluate whether the generated artefacts meets the criteria in
reality (i.e., according to the player’s game experience).



Moreover, it is not enough to simply automatically generate a great number
of elements as one might be more interested in creating components that are
both diverse and of high quality [7].

In this context, this paper presents the following contributions: first, it in-
troduces Gravityvolve!, a physics-based simulation video game that we have im-
plemented, inspired by the n-body problem, a classical problem in the field of
physics and mathematics, which can be used by the CI/AI community for re-
search purposes [8]. Moreover, this paper proposes a method, that can be gen-
eralized to other (not-necessarily physics-based) games, to procedurally design
maps of diverse solving complexity (i.e., of distinct levels of difficult); the pro-
posal consists of an evolutionary algorithm (EA) which is spatially-structured in
a number of sub-populations that are co-evolved separately according to different
properties required by the individuals of each sub-population (which should sup-
posedly guarantee diversity). In addition, it presents a preliminary experimental
study performed to check the suitability of the method.

This paper is structured as follows: Section 2 provides a discussion of related
work and Section 3 describes the game Gravityvolve!, its rules, objective and
the physical laws that guide the gameplay. The map generation algorithm and
the fitness functions that measure the difficulty level of the maps are defined in
Section 4. Finally, Section 5 discusses the conclusions and future work.

2 Background

In addition to aforementioned related work, this section provides a general
overview on Procedural Content Generation (PCG) and Physics-based Simu-
lation Games (PbSGs), and it mentions a number of papers that are directly
related with these issues. That being said, the list of papers is far from exhaus-
tive as a review of these fields is not a goal of this paper.

We can make several distinctions regarding the procedures to follow when
it comes to the automatic content generation for video games. Following the
taxonomy proposed in [9], the content generation should be made online during
the gameplay (which provides us with the aforementioned advantages) or offline
during the development phase of the game. In the same way, PCG techniques
might generate all the content using random seeds (purely stochastic), vectors
of parameters (deterministic) or a combination of both.

According to the necessity of the procedurally generated content for the
player’s progression within the game, we should distinguish between essential
and optional content; the former must meet more restrictive criteria than the
latter.

Depending on the objectives we want to accomplish, the generation might
be done in a constructive manner, ensuring that the content is always valid; or
following a generate-and-test scheme, so the content is verified after its creation
and if it does not pass the test then the algorithm discards and recreates it.

A widely used and well-known class of PCG algorithms is the so-called Search
Based Procedural Content Generation (SBPCG) [10], which is based on looking



for the desired content in the complete landscape of solutions. These algorithms
follow a generate-and-test scheme and assign real values to each solution in order
to measure its quality, instead of accepting or rejecting them. Although evolu-
tionary algorithms are a common choice when developing SBPCG techniques,
they are not unique and we are able to use other kind of algorithms in this
context (like, for example, planning methods [11]).

Presently, procedural content generation is a vibrant field of research with a
large number of papers related to these techniques (the reader can find an anal-
ysis about the diversity of the content that may be generated in a procedural
manner in [3]). A recurring objective is to generate levels/maps for a platform
game. For instance, Noor Shaker et al. [12], proposed a system capable of adapt-
ing several parameters, which define the behavior of a level generator for a Super
Mario Bros. clone, to the playing style of a certain player. Similarly, Pedersen et
al. [13], researched the relationship between the parameters of a PCG algorithm
and the game experience and feelings (frustration, fun, . . . ) that the generated
levels provoked to the player.

Another type of content that is susceptible to evolution is a game’s
map/scenario. For example, Julian Togelius et al., designed a SBPCG multi-
objective evolutionary algorithm whose objective was create maps for real-
time strategy [14, 15] and racing [16] games. In a similar way, Ferreira and
Toledo [17] presented a SBPCG approach for generating levels for the physics-
based videogame Angry Birds. Lara et al. [18] presented a search-based proce-
dural content generation method in the context of the real-time strategy game3

Planet Wars (i.e., the Google AI Challenge 2010) whose objective was to gen-
erate maps that resulted in an interesting gameplay, focusing on properties of
balance and dynamism. Furthermore, the authors expanded their PCG method
by considering both new geometrical properties and topological measures that
were not affected by rotation, scaling and translation with the aim of avoiding the
generation of symmetrical maps that are conceptually equivalent with respect
to the gameplay [19]. The topological measures were obtained from the sphere-
of-influence graph induced by each map [20]. In turn, Frade et al., proposed a
fitness function to guide the generation of accessible terrains with application
to the video game “Chapas” [21, 22]. Hom and Marks [23] went further and
they procedurally generated rules for a two-player board game with a certain
requirement: maximize the balance between both players.

Moreover, there are several examples of PCG for optional content, such as the
weapons that a player is able to use. Hastings et al. [24,25], proposed a SBPCG
algorithm for the game “Galactic Arms Race”. In this case, the fitness of the
generated weapons was computed based on the amount of time the players used
them, hence measuring the player satisfaction without requiring the explicit
attention of the players. Collins [26] introduced to procedural music in video
games, exploring several approaches to procedural composition that had been
used in the past. Font et al. [27] presented initial research towards a system that
is able to create the rules for different card games. The authors of [28] developed

3 http://planetwars.aichallenge.org/.



a prototype of a tool that automatically produces design pattern specifications
for missions and quests for the role-playing game Neverwinter Nights.

The reader wishing to know more about the current state of PCG applied
to games is referred to [4] for more information. There exist, however, specific
references about the application of PCG methods to particular areas of game AI
such as, for instance, procedural methods to generate dungeon game levels [29]
maze-like levels [30], or music generation [31], just to name a few.

As for Physics-based Simulation Games (PbSGs), it is easy to find evidence of
their success in the commercial world as, for instance, Angry Birds, Tower of Goo,
Crayon Physics, or jelly Car, to name but a few. As mentioned, PbSGs provide
realism in the simulation of the game and, therefore, increase the immersion
of the player which surely positively influences her satisfaction and favors their
involvement with the game. In fact, physics can be found even in the early
phases in the history of video games; so, Super Mario Bros already exhibited, in
1985, elementary concepts of physics in the form of jumps, forward/backward
movements, and object throwing, executed by the main character. However,
in modern video games, physics is generally referred to as rigid body physics
simulation subject to real physics laws (e.g., Newton’s Three Laws of Motion or
Newton’s Law of Universal Gravitation, just to name a couple associated to the
classical Physics). PbSGs games are very interesting not only from the player’s
perspective but also from a research point of view; so, there have been interesting
papers recently published on the Physical Travelling Salesman Problem (PTSP),
a real-time game that consists of a ship that must visit a number of waypoints
scattered around a 2-D maze full of obstacles [32]. This problem can be viewed
as a PbSG as all actions applied to the ship are forces that influence its position,
orientation and velocity at each step of the game. Precisely, [33] and [34] employ
algorithms based on Monte Carlo tree search [35] to handle the problem.

Furthermore, “A slower speed of light” [36] is a game developed by the MIT
Game Lab to help students understand and visualize the effects of special rela-
tivity by artificially lowering the speed of light to walking pace. The game, which
is based on a first-person relativity visualization engine that has been released
as OpenRelativity, is a prototype in which players navigate through a 3D space
while picking up orbs that reduce the speed of light.

3 The game: Gravityvolve!

There is a well-known problem inside the field of physics and mathematics,
the so-called n-body problem the origin of which lies in Newton’s Principia and
classically consists of4 “predicting the individual motions of a group of celestial
objects interacting with each other gravitationally”. This problem requires the
existence of n rigid bodies and basically consists of determining the positions
and velocities of these n particles in each instant of the time in accordance with
Newton’s Laws of Motion and of Universal Gravitation, starting with an initial

4 Wikipedia. Accessed on 17th of January, 2016.



position and velocity for each particle and letting the gravitational forces act on
the set of particles. For n = 2 the problem represents, in certain form, the most
fundamental kind of interaction between two bodies, and the problem has no
analytical solution (for n ≥ 3); moreover, generally it can be only simulated using
numerical integration methods [37]. The n-body problem considers n particles
with specific masses m1, . . . ,mn moving in a three dimensional space under the
influence of mutual gravitational attraction.

Gravityvolve! is a game implemented by the authors of this paper [8], that has
been inspired by the n-body problem, which includes some additional features
that transforms an interactive simulation into a playable environment. In the
following paragraphs we discuss some articular features of our game:

In the first place, the simulation is constrained to a 2D environment, because
using a 3D environment would result on a senseless increase of the complex-
ity and we want to preserve the simplicity of traditional PbSG such as Angry
Birds. Players have a simpler visualization of the game using a bi-dimensional
environment: they are able to watch the full playing area all the time, with an
aerial view of the plane where the particles are located. This way, the particles’
trajectories are more natural and understandable in 2D than in 3D.

Anyhow, dealing with the problem in this way does not represent a decrease
in the generality of 3D games, especially those games whose game terrain is a
surface that can be defined as the graph of a certain function f : R × R → R.
Thus, although the map has a three-dimensional appearance, the position of its
components may be defined with two coordinates and its topology matches the
plane R× R.

Secondly, there is only a particle (i.e., a ball) affected by the gravitational
force of the remaining particles during the simulation. This particle is the only
one the player is able to interact with, by changing its velocity vector and guiding
it over the screen, while the remaining particles remain static on their initial
position. Once again, this restriction is done for the sake of simplicity, hence
reducing the amount of information the player has to process and avoiding highly
chaotic and unpredictable behaviors.

Figure 1 shows two screenshots of the game running the version with 5 plan-
ets. There are n = 5 particles (i.e., planets) with an associated mass distributed
over the screen; each particle is represented by a planet with a radius that is as
long as its mass. These particles (i.e. planets) remain static throughout the game.
There exist two other bodies that are positioned on the surface of two distinct
planets: the ball, represented by a small red circle, and the hole, represented by
a red circumference. In each step of the game, the user has to interact with the
game to set the magnitude and direction of the velocity vector associated with
the ball. A green line segment (as displayed in Figure 1a) represents precisely
these values to be fixed by the user (the orientation of this line segment indi-
cates the direction in which the ball will be thrown and its length the magnitude
of the force with which the ball is thrown). To help the player, a purple line
shows the prediction of the ball’s trajectory according to the user interaction;
Figure 1b shows the movement of the ball after being affected by the user in



(a) (b)

Fig. 1. Example of two different phases/maps of the game in a 5-planet version. (a) The
length and orientation of the green line segment indicate the magnitude and direction of
the velocity associated with the ball whereas the purple line is a hint (to the player) that
provides a prediction about the trajectory of the ball according to the ‘force’ applied to
the ball (b) The red ball has been thrown and is moving toward the objective according
to both its velocity and the forces of gravitational system.

another 5-planet map. The objective of the game is to drive the ball from its
point of origin to where the hole is placed, in the minimum number of moves.
In a way, Gravityvolve! is equivalent to a Golf Game in the sense that a ball
has to reach the objective of a hole in a minimum number of hits, whereas the
tuning of the values associated with the magnitude and direction of the ball in
Gravityvolve! corresponds to hitting the ball in golf.

Given the aforementioned objective and game features, the task of defining
a map for this game consists of defining the mass and position for each planet
in the map, as well as the initial positions of both the ball (i.e., the movable
particle) and the hole. An additional effort consists of obtaining maps of vary-
ing difficulty which clearly depends on the arrangement of the planets and the
original placement of both the ball and the hole.

3.1 Game physics

The gameplay in Gravityvolve! is based on Newton’s Law of Universal Gravita-
tion, as well as Newton’s Three Laws of motion. In particular, the first law states
that any two bodies in the universe attract each other with a force that is directly
proportional to the product of their masses m1,m2 and inversely proportional
to the square of the distance r between them. Note that as our objective was to
create a simulation with our own magnitudes, the gravitational constant became
irrelevant so we got by without it ensuring that the simulation keeps meeting
Kepler’s laws. That way, the acceleration that one body causes to another is the
interesting magnitude, which is, in addition, an easily computable variable: the
second of Newton’s law states that the relationship between the acceleration a
suffered by a body with a mass m1 then the received force is F = m1a

Considering this force F the one produced by another body with a mass m2,
then the first body is affected by an acceleration a = Gm2

r2



The aforementioned equation calculates the modulus of the acceleration vec-
tor, however, we need the coordinates of this vector in order to apply it to the
movable particle. Using basic trigonometric equations: denoting by p1 and p2 the
position vectors of both bodies, the acceleration that the second body provokes
on the first one is a = m2

r3 (p2 − p1)
A simple implementation of the simulation that uses the aforementioned vec-

tor of acceleration consists of discretizing the time in such a way that, on each
iteration, it updates the velocity and consequently the position of the particle
with the acceleration vector depending on the elapsed discretized time. Although
the Runge-Kutta integration method has more precision, we used the Newton in-
tegration method which is precise enough for this game and its rules. Magnitudes
such as time discretization, the mean of the masses and the game screen dimen-
sion are strictly related with each other them while establishing the precision
and velocity of the simulation.

4 The procedural map generator

The map generator is based on a steady-state evolutionary algorithm with a
structured population divided into three sets (i.e., subpopulations) with the
same number of elements. The first set contains those best adapted individu-
als according to the fitness function, which measures the difficulty level of the
map. According to this, each sub-population groups the individuals with sim-
ilar difficulty levels, so hard maps (i.e., those with their fitness value ranged
between the theoretical maximum fitness and a 66% of this value) should rely
on the first group as medium and easy maps should rely on second and third
sub-populations, respectively.

Regarding the generation of the initial population, the algorithm generates
random individuals and assigns them to their corresponding subpopulation until
all of them are complete, hence ensuring a high population diversity at the
beginning of the evolutionary process.

Upon each generation, the algorithm selects two random individuals from
the population, which are then mutated and recombined using the operators
described in Section 4.1. We decided to use this random selection mechanism
to increase the diversity of the offspring. Then, the algorithm computes the
fitness of the new individuals and inserts them into the population applying the
following replacement policy: as the population is structured into three groups,
the subpopulation where the new individual may be inserted depends on its
fitness value and the theoretical maximum fitness value. Then, depending on the
selected subpopulation, that is, Hard, Medium or Easy, the fitness of the new
individual is compared to the fitness of the best, central or worst individual,
respectively (see Figure 2).

Each individual of the algorithm represents a map, and every map is defined
by the planets included in it and the position of both the ball and the hole. Each
planet is made up of three genes: its x and y coordinates and its mass m (which,
in addition, corresponds to its radius). Regarding the ball and the hole, they are



Fig. 2. Structure of the algorithm’s population according to the fitness of their elements
and both theoretical maximum and minimum fitness value. New individuals replace
the worst individual of the corresponding subpopulation if their fitness is better. Gray
coloured individuals are those selected for the experimental phase.

made of two genes each: the planet over which they are placed and the angle
in radians that specify the position over the planet surface. Figure 3 shows an
example of a map and its corresponding encoding using our evolutionary PCG
method.

4.1 Operators

Regarding the mutation operator, on a map with n planets, the number of genes
is 3n + 4, one for each planet’s X and Y coordinate and its mass, and two for
both the ball and the hole, which corresponds to the planets on which ball and
hole are placed as well as the angle in radians (see Figure 3). Note that planets’
genes and those that encode the properties of the ball and the hole follows a
different mutation process. With respect to the planets’ genes, their mutation
probability is p = 1

3n , so the number of mutated genes from each map follows
a binomial distribution X ∼ B(3n, 1

3n ) so the mean quantity of mutated genes
turns out to be 1.

When a gene is selected for mutation, its coordinates are modified adding a
random value ∆c that follows a normal distribution with µ = 0 and s2 = 50 to
each coordinate. A similar modification is made to the planet’s mass in such a
way so that the planet may increase or decrease its radius (mass), the mutation
step follows the same distribution as the mutation step of the coordinates.

On the other hand, for the mutation of both the ball and the hole, a new
random planet and angle are assigned to them, with a mutation probability of
0.15.

After the mutation step, the algorithm checks the validity of the map and, if
the map is no longer valid (i.e., a planet has moved out of bounds or there are
overlapping planets), the algorithm reverts the mutation and repeats the process
until the map remains valid after applying the mutation changes.



Fig. 3. An example of a 4-planet Gravityvolve! map in a scenario of size 10×10, and its
corresponding encoding. Planets are numbered for clarity; the first 12 genes represent
the information of the planets — i.e., 3 genes per planet to encode its position in the
2D grid and its radius (i.e., mass). Genes 13th and 14th (resp., genes 15th and 16th)
provide information for the ball (resp. the hole) in the form of the planet number over
which it is placed and angle in radians that indicates its position in the planet’s surface
taking the circumference relative to the surface of the planet as reference.

The crossover operator, whose definition follows, is inspired by the one point
recombination, but geometrically. In the first step the operator computes a ran-
dom line that splits the map area and then, using two random points, defines the
equation of the line. Secondly, the operator builds two sets of planets, one for
those that stand above the line and another for those under the line. A map is
considered to be a member of one set or the other if its center is above or below
the line. This cut should be accepted as valid if there is at least one planet on
either side of the line and the number of planets on each side is the same. The
crossover operator works over two parents and, after a valid cut is computed for
each parent, their slices are swept (left/up slice from parent one combined with
right/down slice from parent two and vice versa) so new individuals get one slice
from each parent.

It might seems that considering a cut as valid only if there is the same number
of planets on both slices is a very restrictive condition, because as the number of
planets raises, the probability of making a valid cut decreases: given n planets,
this probability is roughly 1

n (provided that we are omitting the unlikely case
where there are no planets on a slice). Hence the mean number of attempts to
achieve a valid cut is n. However, this problem can be avoided introducing a
minor change into the algorithm: a cut will be valid if there is a difference of
k (k << n) between the number of planets on both slices and, in this case,
positioning the remaining planets at random positions or moving them into the
parent with the lowest number of planets.



(a) (b)

Fig. 4. Example of a crossover operation. The upper maps are the parents (a) and the
lower are the children (b). Parent maps are divided into two slices following the same
cut line and then swapped in order to obtain the children. Planets have been colored
to distinguish which parent the planets on the child side have been taken from.

Figure 4 shows a valid example of a crossover. The red line is the line used
to divide the map into two slices. For the sake of clarity, planets from each map
are colored so it is easy to identify them before and after the crossover.

4.2 Measuring a map’s difficulty level

We propose three different fitness functions representing level properties that
try to measure the difficulty level of a map. Contrary to the aforementioned
methods, these functions are strictly related to the game and may be difficult to
adapt and use for other games.

Fig. 5. Maps with maximum fitness values computed by the intersections (left) and
simulations (right) methods. The black circle and circumference represents the ball and
the hole, respectively. On the left side, the planets are aligned with a screen diagonal
and the particle and hole are placed on opposite corners of the screen. On the right
side, the ball is located on the corner after a simulated shoot and the hole is on the
opposite corner, so the distance between them is the highest.

The first fitness function is based on the idea that the distance between the
particle and the hole as well as the number of planets between them is a good
estimator of how hard it is to place the particle over the hole. This method
computes the equation of the line between the particle’s center and the planet
where the hole is located in order to find which planets intersect with this line and
how far the hole is from the particle. Given the equation of the line y = mx+ n
and the circumference of a certain planet (x− a)2 + (y− b)2 = R2, the intersect
points between that planet and the line are:




x1 = ±

√
R2m2 +R2 − a2m2 + 2abm− 2amn− b2 + 2bn− n2

m2 + 1
+
a+ bm−mn

m2 + 1

y1 = mx1 + n

The fitness value computed by this function is the sum of all these line
segments defined by the aforementioned intersect points. We observe that, if
there were no restrictions on the generated levels such as no two planets should
overlap and there must exist a minimum distance between the planets so the ball
is able to move between them without getting stuck, maps with a high fitness
would be a level with all the planets aligned with a screen diagonal without any
gap between them and the particle and hole placed on opposite corners of the
screen, which defines, in turn, the map that evaluates to the maximum possible
fitness value (see Figure 5). However, the restrictions applied to the generated
maps increase the variability of the procedurally generated maps.

There is a another way of measuring the difficulty level of the game’s objec-
tive: minimize the ball’s force of attraction. An easy way to achieve this could
be minimizing the mass of the planet that hosts the hole and increasing the
respective masses of the other planets. For instance, the fitness function might
be the defined as m

M , given the mass of the target planet m and the sum of the
mass of the remaining planets M . Due to the simplicity of the solution, this
could be implemented without using evolutionary algorithms but the resulting
maps would be quite similar to each other and the position of the planets would
not affect the generation process which in turn would lead to a loss in diversity
in the solutions.

Fig. 6. Projection of the induced acceleration for an auxiliary particle by other planets
over the vector between this particle and the center of the planet

For these reasons, we consider a more complex fitness function, based on the
force of attraction, that takes into account the mass and position of each planet.



The function takes the mean acceleration ā produced by all the planets over the
planet with the hole (the target planet) as the fitness value for a certain map.
The function puts n = 50 auxiliary particles uniformly distributed around the
target planet within a certain distance d and then, computes the acceleration α
induced for each auxiliary by the other p planets, which is projected over the
vector between the auxiliary particle and the planet center (see Figure 6):

ā =

∑n
i=1 proj(αi)

n

In this case, the maximum fitness value, which defined the subpopulations,
was the highest fitness value computed for the random individuals that were in
the initial population.

Thirdly, we define a simulation-based fitness function that makes several
shootings with different angles and forces, more precisely, the function simulates
10 throws towards the target planet with random velocities. So, the fitness of
the map is the minimum distance between the ball after the shoot and the hole,
hence as the fitness decreases, the difficulty level of the map also decreases.
The reader should observe that the maximum theoretical value for this fitness
function is reached when the ball, after the shoot, is located on a corner of the
screen and the hole is on the opposite corner (see Figure 5).

5 Conclusions

This paper has presented a physics-based video game inspired by the so-called
n-body problem, a well-known problem in the field of physics and mathematics.
The maps for the games have been procedurally generated using a steady-state
evolutionary algorithm whose population was structured in three groups or dif-
ficulty levels; our spatially-structured proposal is directed to obtain content of
diverse nature (in the case of this paper of varying difficulty) and can be easily
generalized to other games. In addition, three different fitness functions have
being proposed to drive the search process inside our evolutionary algorithm.
These functions compute how difficult a map is depending on multiple criteria:
the number of planets in straight line between the particle and the target, the
gravitational acceleration induced on the target planet by the rest of the map’s
elements and the distance between the target and the particle after shooting it
using different angles and forces (i.e. simulations).

In [8], we provide a web link where the reader can play a number of maps
(with 5 planets), of diverse difficulty, that were generated by our proposed PCG
method (and by considering all the fitness functions defined here). We have
performed a preliminary study on the system’s capabilities to generate maps of
diverse difficulty: the web platform has collected the participation of 58 unique
users and an average number of votes per map of 55, because not all participants
played and evaluated each of the 21 maps (see Table 1).

Note that the generated maps contains only 5 planets and, thus the maps are
not difficult to play. However, some players (a 10%) considered some of our maps



Table 1. Each row (except the first row) represents the maps with a certain difficulty
level from our testbed; column 1 indicates the fitness function employed to generate
these maps whereas column 2 provides the group to which the map belongs according
to the PCG method whose search was lead by the specified fitness function; columns 3
to 5 display the votes given by the users to each specific map according to their game
experience, and column 6 shows the number of votes received for each map.

Fitness Type level Hard Medium Easy Total

Intersections Hard 10 45 54 109
Medium 5 19 136 160

Easy 12 56 44 112

Attraction Hard 15 34 60 109
Medium 26 40 106 172

Easy 7 31 67 105

Simulations Hard 17 44 49 110
Medium 11 49 104 164

Easy 2 21 89 112

as hard. This is a promising result although, in general, players perceived that
the maps were of medium or easy difficulty. This is a preliminary experiment
and we plan to generate maps with varying number of planets (e.g., between 5
and 15) and conduct a deeper analysis of the results.

We are aware that some of the concepts described in this paper might seem
very specific of the game, however, the schema of our spatially-structured method
can be adjusted to other games, and demonstrating this is also part of a future
work.
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