Skip to main content

Mutual Information Estimation for Filter Based Feature Selection Using Particle Swarm Optimization

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9597))

Included in the following conference series:

  • 2883 Accesses

Abstract

Feature selection is a pre-processing step in classification, which selects a small set of important features to improve the classification performance and efficiency. Mutual information is very popular in feature selection because it is able to detect non-linear relationship between features. However the existing mutual information approaches only consider two-way interaction between features. In addition, in most methods, mutual information is calculated by a counting approach, which may lead to an inaccurate results. This paper proposes a filter feature selection algorithm based on particle swarm optimization (PSO) named PSOMIE, which employs a novel fitness function using nearest neighbor mutual information estimation (NNE) to measure the quality of a feature set. PSOMIE is compared with using all features and two traditional feature selection approaches. The experiment results show that the mutual information estimation successfully guides PSO to search for a small number of features while maintaining or improving the classification performance over using all features and the traditional feature selection methods. In addition, PSOMIE provides a strong consistency between training and test results, which may be used to avoid overfitting problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  2. Liu, H., Motoda, H., Setiono, R., Zhao, Z.: Feature selection: an ever evolving frontier in data mining. FSDM 10, 4–13 (2010)

    Google Scholar 

  3. Whitney, A.W.: A direct method of nonparametric measurement selection. IEEE Trans. Comput. 100(9), 1100–1103 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Marill, T., Green, D.M.: On the effectiveness of receptors in recognition systems. IEEE Trans. Inf. Theory 9(1), 11–17 (1963)

    Article  Google Scholar 

  5. Nag, K., Pal, N.R.: A multiobjective genetic programming-based ensemble for simultaneous feature selection and classification. IEEE Trans. Cybern. 46(2), 499–510 (2015)

    Article  Google Scholar 

  6. Lin, F., Liang, D., Yeh, C.C., Huang, J.C.: Novel feature selection methods to financial distress prediction. Expert Syst. Appl. 41(5), 2472–2483 (2014)

    Article  Google Scholar 

  7. Chuang, L.Y., Chang, H.W., Tu, C.J., Yang, C.H.: Improved binary PSO for feature selection using gene expression data. Comput. Biol. Chem. 32(1), 29–38 (2008)

    Article  MATH  Google Scholar 

  8. Hassan, R., Cohanim, B., De Weck, O., Venter, G.: A comparison of particle swarm optimization and the genetic algorithm. In: Proceedings of the 1st AIAA Multidisciplinary Design Optimization Specialist Conference, pp. 1–13 (2005)

    Google Scholar 

  9. Dash, M., Liu, H.: Feature selection for classification. Intell. Data Anal. 1(3), 131–156 (1997)

    Article  Google Scholar 

  10. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1), 273–324 (1997)

    Article  MATH  Google Scholar 

  11. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2012)

    MATH  Google Scholar 

  12. Dash, M., Liu, H., Motoda, H.: Consistency based feature selection. In: Terano, T., Liu, H., Chen, A.L.P. (eds.) PAKDD 2000. LNCS (LNAI), vol. 1805, pp. 98–109. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Hall, M.: Correlation-based feature selection for discrete and numeric class machinelearning. In: Proceedings of 7th International Conference on Machine Learning, Stanford University (2000)

    Google Scholar 

  14. Kononenko, I.: On biases in estimating multi-valued attributes. In: IJCAI. vol. 95, pp. 1034–1040. Citeseer (1995)

    Google Scholar 

  15. Walters-Williams, J., Li, Y.: Estimation of mutual information: a survey. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS, vol. 5589, pp. 389–396. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys. Rev. E 69(6), 066138 (2004)

    Article  MathSciNet  Google Scholar 

  17. Kennedy, J., Eberhart, R., et al.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. Perth, Australia (1995)

    Google Scholar 

  18. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sturges, H.A.: The choice of a class interval. J. Am. Stat. Assoc. 21(153), 65–66 (1926)

    Article  Google Scholar 

  20. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  21. Doquire, G., Verleysen, M.: A performance evaluation of mutual information estimators for multivariate feature selection. In: Carmona, P.L., Salvado Sánchez, J., Fred, A.L.N. (eds.) ICPRAM 2012. AISC, vol. 204, pp. 51–63. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  22. Stearns, S.D.: On selecting features for pattern classifiers. In: Proceedings of the 3rd International Conference on Pattern Recognition (ICPR 1976), pp. 71–75. Coronado, CA (1976)

    Google Scholar 

  23. Zhu, Z., Ong, Y.S., Dash, M.: Wrapper-filter feature selection algorithm using a memetic framework. IEEE Trans. Syst. Man Cybern. B Cybern. 37(1), 70–76 (2007)

    Article  Google Scholar 

  24. Neshatian, K., Zhang, M.: Genetic programming for feature subset ranking in binary classification problems. In: Vanneschi, L., Gustafson, S., Moraglio, A., Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 121–132. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Hunt, R., Neshatian, K., Zhang, M.: A genetic programming approach to hyper-heuristic feature selection. In: Bui, L.T., Ong, Y.S., Hoai, N.X., Ishibuchi, H., Suganthan, P.N. (eds.) SEAL 2012. LNCS, vol. 7673, pp. 320–330. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  26. Sousa, P., Cortez, P., Vaz, R., Rocha, M., Rio, M.: Email spam detection: a symbiotic feature selection approach fostered by evolutionary computation. Int. J. Inf. Technol. Decis. Making 12(04), 863–884 (2013)

    Article  Google Scholar 

  27. Bhowan, U., McCloskey, D.: Genetic programming for feature selection and question-answer ranking in IBM watson. In: Machado, P., Heywood, M.I., McDermott, J., Castelli, M., García-Sánchez, P., Burelli, P., Risi, S., Sim, K. (eds.) EuroGP 2015. LNCS, vol. 9025, pp. 153–166. Springer, Heidelberg (2015)

    Google Scholar 

  28. Xue, B., Zhang, M., Browne, W.N.: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms. Appl. Soft. Comput. 18, 261–276 (2014)

    Article  Google Scholar 

  29. Cervante, L., Xue, B., Zhang, M., Shang, L.: Binary particle swarm optimisation for feature selection: a filter based approach. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)

    Google Scholar 

  30. Butler-Yeoman, T., Xue, B., Zhang, M.: Particle swarm optimisation for feature selection: a hybrid filter-wrapper approach. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 2428–2435. IEEE (2015)

    Google Scholar 

  31. Xue, B., Zhang, M., Browne, W., Yao, X.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. published online on 30 November 2015. doi:10.1109/TEVC.2015.2504420

    Google Scholar 

  32. Asuncion, A., Newman, D.: UCI machine learning repository (2007)

    Google Scholar 

  33. Van Den Bergh, F.: An analysis of particle swarm optimizers. PhD thesis, University of Pretoria (2006)

    Google Scholar 

  34. Zhai, Y., Ong, Y.S., Tsang, I.W.: The emerging big dimensionality. IEEE Comput. Intell. Mag. 9(3), 14–26 (2014)

    Article  Google Scholar 

  35. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 84–88. IEEE (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoai Bach Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nguyen, H.B., Xue, B., Andreae, P. (2016). Mutual Information Estimation for Filter Based Feature Selection Using Particle Swarm Optimization. In: Squillero, G., Burelli, P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science(), vol 9597. Springer, Cham. https://doi.org/10.1007/978-3-319-31204-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31204-0_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31203-3

  • Online ISBN: 978-3-319-31204-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics