Abstract
Performing a tsunami or storm surge simulation in real time on low power computation devices is a highly challenging research topic with a big impact on the lives of many people. In order to advance this topic further a tight collaboration between mathematics and computer science is needed. Mathematical models must be combined with numerical methods which, in turn, directly determine the computational performance and efficiency of the solution. Also, code parallelization is required in order to obtain accurate and fast simulation results. Traditional approaches in high performance computing require a lot of computational power and significant amounts of electrical energy; they are also highly dependent on uninterrupted access to a reliable network and power supply. We present a concept how to develop solutions for suitable low power hardware architectures for tsunami and storm surge simulations based on cooperative software and hardware simulation. The main goal is to enable in situ simulations on potentially battery-powered device on site. Flood warning systems in regions with weak or unreliable power, network and computing infrastructure could largely benefit from our approach as it would significantly decrease the risk of network or power failure during the computation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Aizinger, V., Proft, J., Dawson, C., Pothina, D., Negusse, S.: A three-dimensional discontinuous galerkin model applied to the baroclinic simulation of corpus christi bay. Ocean Dyn. 63, 89–113 (2013)
Rajovic, N., Carpenter, P.M., Gelado, I., Puzovic, N., Ramirez, A., Valero, M.: Supercomputing with commodity CPUs: are mobile SOCs ready for HPC? In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC’13, vol. 40, no. 12, pp. 1–40. ACM, New York, NY, USA (2013)
Göddeke, D., Komatitsch, D., Geveler, M., Ribbrock, D., Rajovic, N., Puzovic, N., Ramirez, A.: Energy efficiency vs. performance of the numerical solution of PDEs: an application study on a low-power ARM-based cluster. J. Comput. Phys. 237, 132–150 (2013)
Rajovic, N., Rico, A., Puzovic, N., Adeniyi-Jones, C., Ramirez, A.: Tibidabo: making the case for an ARM-based {HPC} system. Future Gener. Comput. Syst. 36, 322–334 (2014) (Special Section: Intelligent Big Data Processing. Special Section: Behavior Data Security Issues in Network Information Propagation. Special Section: Energy-efficiency in Large Distributed Computing Architectures. Special Section: eScience Infrastructure and Applications)
ITMC TU Dortmund: Official lido website. https://www.itmc.uni-dortmund.de/dienste/hochleistungsrechnen/lido.html (2015). Last visit on 26 Mar 2015
Castro, M., Francesquini, E., Nguélé, T.M., Méhaut, J.F.: Analysis of computing and energy performance of multicore, NUMA, and manycore platforms for an irregular application. In: Proceedings of the 3rd Workshop on Irregular Applications: Architectures and Algorithms, IA3’13, vol. 8, pp. 1–5. ACM, New York, NY, USA (2013)
Applegate, D., Bixby, R., Chvátal, V., Cook, W.: The Traveling Salesman Problem: A Computational Study: A Computational Study. Princeton Series in Applied Mathematics. Princeton University Press (2011)
KALRAY Corporation: Official kalray mppa processor website. http://www.kalrayinc.com/kalray/products/#processors (2015). Last visit on 31 Mar 2015
NVIDIA Corporation: Official NVIDIA SECO development kit website. https://developer.nvidia.com/seco-development-kit (2015). Last visit on 31.03.2015
Rajovic, N., Rico, A., Vipond, J., Gelado, I., Puzovic, N., Ramirez, A.: Experiences with mobile processors for energy efficient HPC. In: Proceedings of the Conference on Design, Automation and Test in Europe, DATE’13, pp. 464–468, San Jose, CA, USA, EDA Consortium (2013)
NVIDIA Corporation: Official NVIDIA Tegra 2 website. http://www.nvidia.com/object/tegra-superchip.html (2015). Last visit on 27 Mar 2015
NVIDIA Corporation: Official NVIDIA Tegra 3 website. http://www.nvidia.com/object/tegra-3-processor.html (2015). Last visit on 27 Mar 2015
Miller, J., Kasture, H., Kurian, G., Gruenwald, C., Beckmann, N., Celio, C., Eastep, J., Agarwal, A.: Graphite: a distributed parallel simulator for multicores. In: 2010 IEEE 16th International Symposium on High Performance Computer Architecture (HPCA), pp. 1–12 (2010)
Kurian, G., Neuman, S., Bezerra, G., Giovinazzo, A., Devadas, S., Miller, J.: Power modeling and other new features in the graphite simulator. In: 2014 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 132–134 (2014)
Carlson, T.E., Heirman, W., Eeckhout, L.: Sniper: Exploring the level of abstraction for scalable and accurate parallel multi-core simulations. In: International Conference for High Performance Computing, Networking, Storage and Analysis (SC), vol. 12, pp. 1–52 (2011)
Li, S., Ahn, J.H. Strong, R.D., Brockman, J.B., Tullsen, D.M., Jouppi, N.P.: The McPAT framework for multicore and manycore architectures: simultaneously modeling power, area, and timing. ACM Trans. Archit. Code Optim. 10(29), 1–5 (2013)
Heirman, W., Sarkar, S., Carlson, T.E., Hur, I., Eeckhout, L.: Power-aware multi-core simulation for early design stage hardware/software co-optimization. In: International Conference on Parallel Architectures and Compilation Techniques (PACT) (2012)
SocLib Project: Official SoCLib developer website. http://www.soclib.fr/trac/dev (2015). Last visit on 01 Feb 2015
Accellera Systems Initiative: Official systemc website. http://www.systemc.org (2015). Last visit on 02 Feb 2015
Atitallah, R., Niar, S., Greiner, A., Meftali, S., Dekeyser, J.: Estimating energy consumption for an MPSoC architectural exploration. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) Architecture of Computing Systems—ARCS 2006. Lecture Notes in Computer Science, vol. 3894, pp. 298–310. Springer, Berlin Heidelberg (2006)
Weaver, V.M., McKee, S.A.: Are cycle accurate simulations a waste of time? In: Proceedings of 7th Workshop on Duplicating, Deconstructing, and Debunking (2008)
Lis, M., Ren, P., Cho, M.H., Shim, K.S., Fletcher, C., Khan, O., Devadas, S.: Scalable, accurate multicore simulation in the 1000-core era. In: 2011 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 175–185 (2011)
Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hestness, J., Hower, D.R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N., Hill, M.D., Wood, D.A.: The gem5 simulator. SIGARCH Comput. Archit. News 39, 1–7 (2011)
Binkert, N.L., Dreslinski, R.G., Hsu, L.R., Lim, K.T., Saidi, A.G., Reinhardt, S.K.: The m5 simulator: modeling networked systems. IEEE Micro 26, 52–60 (2006)
GEMS Development Team: Official gems website. http://research.cs.wisc.edu/gems/ (2015). Last visit on 02 Feb 2015
Endo, F.A., Couroussé, D., Charles, H.P.: Micro-architectural simulation of embedded core heterogeneity with gem5 and mcpat. In: Proceedings of the 2015 Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools, RAPIDO’15, vol. 6, pp. 1–7. ACM, New York, NY, USA (2015)
Bellard, F.: QEMU, a fast and portable dynamic translator. In: USENIX Annual Technical Conference, FREENIX Track, pp. 41–46 (2005)
Imperas Software Limited: OVP Guide to Using Processor Models. Imperas Buildings, North Weston, Thame, Oxfordshire, OX9 2HA, UK. Version 0.5, docs@imperas.com (2015)
Rosa, F., Ost, L., Raupp, T., Moraes, F., Reis, R.: Fast energy evaluation of embedded applications for many-core systems. In: 2014 24th International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS), pp. 1–6 (2014)
Dawson, C., Aizinger, V.: A discontinuous galerkin method for three-dimensional shallow water equations. J. Sci. Comput. 22, 245–267 (2005)
Cockburn, B., Shu, C.W.: The local discontinuous galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)
Imperas Software Limited: OVPsim and Imperas CpuManager User Guide. Imperas Buildings, North Weston, Thame, Oxfordshire, OX9 2HA, UK. Version 2.3.7, docs@imperas.com (2015)
Altera Corporation: Cyclone V SoC Development Kit User Guide. https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_cv_soc_dev_kit.pdf (2013). Last visit on 07 May 2015
Imperas Software Limited: Description of Altera Cyclone V SoC. http://www.ovpworld.org/library/wikka.php?wakka=AlteraCycloneVHPS (2015). Last visit on 29 Apr 2015
Berschneider, S., Herglotz, C., Reichenbach, M., Fey, D., Kaup, A.: Estimating video decoding energies and processing times utilizing virtual hardware. In: Proceedings of 3PMCES Workshop, Design, Automation and Test in Europe (DATE) (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Schoenwetter, D., Ditter, A., Kleinert, B., Hendricks, A., Aizinger, V., Fey, D. (2016). Virtualization Guided Tsunami and Storm Surge Simulations for Low Power Architectures. In: Obaidat, M., Kacprzyk, J., Ören, T., Filipe, J. (eds) Simulation and Modeling Methodologies, Technologies and Applications. Advances in Intelligent Systems and Computing, vol 442. Springer, Cham. https://doi.org/10.1007/978-3-319-31295-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-31295-8_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31294-1
Online ISBN: 978-3-319-31295-8
eBook Packages: EngineeringEngineering (R0)