Abstract
The decision support models in intensive care units are developed to support medical staff in their decision making process. However, the optimization of these models is particularly difficult to apply due to dynamic, complex and multidisciplinary nature. Thus, there is a constant research and development of new algorithms capable of extracting knowledge from large volumes of data, in order to obtain better predictive results than the current algorithms. To test the optimization techniques a case study with real data provided by INTCare project was explored. This data is concerning to extubation cases. In this dataset, several models like Evolutionary Fuzzy Rule Learning, Lazy Learning, Decision Trees and many others were analysed in order to detect early extubation. The hybrids Decision Trees Genetic Algorithm, Supervised Classifier System and KNNAdaptive obtained the most accurate rate 93.2, 93.1, 92.97 % respectively, thus showing their feasibility to work in a real environment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Santos, M.F., Portela, F., Vilas-Boas, M.: INTCARE -Multi-agent Approach for Real-time Intelligent Decision Support in Intensive Medicine. In: ICAART 2011 - International Conference on Agents and Artificial Intelligence. pp 364-369. SciTePress. (2011)
Portela, F., Pinto, Santos, M. F.: Data Mining Predictive Models For Pervasive Intelligent Decision Support In Intensive Care Medicine. In: KMIS 2012 - Knowledge Management and Information Sharing. pp 81-88. SciTePress (2012)
Oliveira, S., Portela, F., Santos, M. F., Neves, J., Silva, Á. Rua, F.: Feature selection for detecting patients with weaning failures in Intensive Medicine. In: Mathematics and Computers in Sciences and Industry. Volume 50, pp 195-200. CPS (2015)
Ramon, J., Fierens, D., Güiza, F., Meyfroidt, G., Blockeel, H., Bruynooghe, M., & Van Den Berghe, G.: Mining data from intensive care patients. In: Advanced Engineering Informatics, 21(3), 243–256. doi:10.1016/j.aei.2006.12.002. (2007)
De Turck, F., Decruyenaere, J., Thysebaert, P., Van Hoecke, S., Volckaert, B., Danneels, C., De Moor, G.: Design of a flexible platform for execution of medical decision support agents in the intensive care unit. In: Computers in Biology and Medicine, 37, 97–112. 2007)
Kaynar, A. and Sharma, S.: Respiratory Failure. 39. Available: http://emedicine.medscape.com/article/167981-print. Accessed Dec, 2015
Tehrani, F. T.: Automatic control of mechanical ventilation. Part 2: the existing techniques and future trends. In: Journal of clinical monitoring and computing, vol. 22, pp. 417-424. (2008)
Stawicki, S. P.: Mechanical ventilation: weaning and extubation (2007)
Alves, C. J. S., Pardalos, M. P., Vicente, L. N.: In: Optimization in Medicine, Springer Optimization and its Applications Series, Vol. 12. Springer (2008)
Gilli, M., & Winker, P.: A review of heuristic optimization methods in econometrics. In: Heuristic Optimization Methods in Econometrics (2008)
Birattari, M., Paquete, L., Stützle, T., Varrentrapp, K.: Classification of Metaheuristics and Design of Experiments for the Analysis of Components, In: Technical Report AIDA-01-05, FG Intellektik, FB Informatik, Technische Universität Darmstadt, Darmstadt, Germany. (2001)
Boussaïd, I., Lepagnot, J., & Siarry, P.: A survey on optimization metaheuristics. In: Information Sciences, 237, 82–117 (2013)
Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms, Oxford University Press, Oxford, UK. (1996)
Oliveira, P., Portela, C.F., Santos, M.F., Silva, Á., Machado, J., Abelha, A.: Machine Learning: an overview of optimization techniques. In: Recente Advances in Computer Science, Series 32, 2015, pp 51-56. INASE (2015)
Alcalá-Fdez, J., Sánchez, L., Garcia, S., del Jesus, M.J., Ventura, S. Garrel, J.M., Otero, J., Romero, C., Bacardit, J., Rivas, V.M., Fernández, J.C., Herrera, F.: KEEL: A Software Tool to Assess Evolutionary Algorithms to Data Mining Problems. Soft Computing 13:3 (2009)
Dietterich, T.G.: Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. In: Neural Computation 10:7 (1998)
Carvalho, D.R., Freitas, A., A.: A hybrid decision tree/genetic algorithm method for data mining. In: Information Sciences 163:1, 13-35 (2004)
Bernadó-Mansilla, E., Garrel, J., M.: Accuracy-Based Learning Classifier Systems: Models, Analysis and Applications to Classification Tasks. In: Evolutionary Computation 11:3, 209-238 (2003)
Wang, J., Neskovic, P., Cooper, L., N.: Improving nearest neighbor rule with a simple adaptative distance measure. In: Pattern Recognition Letters 28, 207-213 (2007)
Sheskin, D.: Handbook of parametric and nonparametric statistical procedures. Chapman and Hall/CRC (2003)
Doksum, K.: Robust procedures for some linear models with one observation per cell. In: Annals of Mathematical Statistics 38, 878-883 (1967)
Portela, F., Santos, M., Machado, J., Silva, A., Abelha. A. Pervasive and Intelligent Decision Support in Critical Health Care using Ensemble. In: Lecture Notes in Computer Science (LNCS) - Information Technology in Bio- and Medical Informatics. Volume 8060, 2013, pp 1-16. ISBN: 978-3-642-40093-3. Springer (2013)
Portela, F., Santos, M., Machado, J., Silva, A., Abelha. A.: Pervasive Ensemble Data Mining Models to Predict Organ Failure and Patient Outcome in Intensive Medicine. In: Communications in Computer and Information Science. Volume 415, 2013, pp 410-425. ISBN: 978-3-642-54104-9. Springer (2013)
Portela, F., Santos, M., Vilas-Boas, M., Rua, F., Silva, Á., Neves, J.: Real-time Intelligent decision support in intensive medicine. In: KMIS 2010-International Conference on Knowledge Management and Information Sharing, Valência, Espanha, p. 7 (2010)
Oliveira, S., Portela, F., Santos, M., Machado, J., Silva, A., Abelha. A, Rua, F.: Predicting Plateau Pressure in Intensive Medicine for Ventilated patients. In: Advances in Intelligent Systems and Computing (WorldCist 2015 - Healthcare Information Systems: Interoperability, Security and Efficiency Workshop). Volume 354, 2015, pp 179-188. ISBN: 978-3-319-16527-1. Springer (2015)
Portela, C.F., Santos, M.F., Silva, Á., Machado, J., Abelha, A.: Enabling a Pervasive Approach for Intelligent Decision Support in Critical Health Care. In: Cruz-Cunha, M.M., Varajão, J., Powell, P., Martinho, R. (eds.) CENTERIS 2011, Part III. CCIS, vol. 221, pp. 233–243. Springer, Heidelberg (2011)
Portela, F., Santos, M.F., Vilas-Boas, M.: A Pervasive Approach to a Real-Time Intelligent Decision Support System in Intensive Medicine. In: Fred, A., Dietz, J.L.G., Liu, K., Filipe, J. (eds.) IC3 K 2010. CCIS, vol. 272, pp. 368–381. Springer, Heidelberg (2013)
Portela, F., Santos, M. F., Machado, J., Abelha, A., Silva, Á., Rua, F.: Pervasive and intelligent decision support in intensive medicine–the complete picture. In: Lecture Notes in Computer Science (LNCS) - Information Technology in Bio- and Medical Informatics. Volume 8649, 2014, pp 87-102. Springer (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Oliveira, P. et al. (2016). Optimization Techniques to Detect Early Ventilation Extubation in Intensive Care Units. In: Rocha, Á., Correia, A., Adeli, H., Reis, L., Mendonça Teixeira, M. (eds) New Advances in Information Systems and Technologies. Advances in Intelligent Systems and Computing, vol 445. Springer, Cham. https://doi.org/10.1007/978-3-319-31307-8_62
Download citation
DOI: https://doi.org/10.1007/978-3-319-31307-8_62
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31306-1
Online ISBN: 978-3-319-31307-8
eBook Packages: EngineeringEngineering (R0)