Abstract
The field of Big Data and related technologies is rapidly evolving. Consequently, many benchmarks are emerging, driven by academia and industry alike. As these benchmarks are emphasizing different aspects of Big Data and, in many cases, covering different technical platforms and uses cases, it is extremely difficult to keep up with the pace of benchmark creation. Also with the combinations of large volumes of data, heterogeneous data formats and the changing processing velocity, it becomes complex to specify an architecture which best suits all application requirements. This makes the investigation and standardization of such systems very difficult. Therefore, the traditional way of specifying a standardized benchmark with pre-defined workloads, which have been in use for years in the transaction and analytical processing systems, is not trivial to employ for Big Data systems. This document provides a summary of existing benchmarks and those that are in development, gives a side-by-side comparison of their characteristics and discusses their pros and cons. The goal is to understand the current state in Big Data benchmarking and guide practitioners in their approaches and use cases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alexandrov, A., Brücke, C., Markl, V.: Issues in big data testing and benchmarking. In: Proceedings of the Sixth International Workshop on Testing Database Systems, DBTest 2013, New York, NY, USA, June 24, pp. 1: 1–1: 5 (2013)
AMP Lab: AMP Lab Big Data Benchmark (2013). https://amplab.cs.berkeley.edu/benchmark/
Pavlo, A.: Benchmark (2011). http://database.cs.brown.edu/projects/mapreduce-vs-dbms/
Hadoop, A.: Package org.apache.hadoop.examples.pi (2015). http://hadoop.apache.org/docs/r0.23.11/api/org/apache/hadoop/examples/pi/package-summary.html
Hadoop, A.: TPC Express Benchmark HS - Standard Specification (2015). http://hadoop.apache.org/docs/current/api/org/apache/hadoop/examples/terasort/package-summary.html
Apache Software Foundation: Grep (2009). http://wiki.apache.org/hadoop/Grep
Apache Software Foundation: DataGeneratorHadoop (2010). http://wiki.apache.org/pig/DataGeneratorHadoop
Apache Software Foundation: Running TPC-H Benchmark on Pig (2012). https://issues.apache.org/jira/browse/PIG-2397
Apache Software Foundation: GridMix (2013). https://hadoop.apache.org/docs/stable1/gridmix.html
Apache Software Foundation: Hive performance benchmarks (2013). https://issues.apache.org/jira/browse/HIVE-396
Apache Software Foundation: PigMix (2013).https://cwiki.apache.org/confluence/display/PIG/PigMix
Apache Software Foundation: TPC-H and TPC-DS for Hive (2015). https://github.com/hortonworks/hive-testbench/tree/hive14
Baru, C., Bhandarkar, M., Nambiar, R., Poess, M., Rabl, T.: Setting the direction for big data benchmark standards. In: Nambiar, R., Poess, M. (eds.) TPCTC 2012. LNCS, vol. 7755, pp. 197–208. Springer, Heidelberg (2013)
Baru, C., et al.: Discussion of BigBench: a proposed industry standard performance benchmark for big data. In: Nambiar, R., Poess, M. (eds.) TPCTC 2014. LNCS, vol. 8904, pp. 44–63. Springer, Heidelberg (2015)
BigBench: BigBench (2015). https://github.com/intel-hadoop/Big-Data-Benchmark-for-Big-Bench
Team, B.: BigFrame (2013). https://github.com/bigframeteam/BigFrame/wiki
BSC: Aloja home page (2014). http://aloja.bsc.es/
Chang, J., Lim, K.T., Byrne, J., Ramirez, L., Ranganathan, P.: Workload diversity and dynamics in big data analytics: implications to system designers. In: Proceedings of the 2nd Workshop on Architectures and Systems for Big Data. ASBD 2012, pp. 21–26. ACM, NY (2012)
Chen, Y.: We dont know enough to make a big data benchmark suite-an academia-industry view. Technical report No. UCB/EECS-2012-71 (2012)
Chen, Y., Alspaugh, S., Katz, R.H.: Interactive analytical processing in big data systems: a cross-industry study of mapreduce workloads. PVLDB 5(12), 1802–1813 (2012)
Chen, Y., Ganapathi, A., Griffith, R., Katz, R.H.: The case for evaluating mapreduce performance using workload suites. In: 19th Annual IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems. MASCOTS 2011, Singapore, 25–27 July 2011, pp. 390–399 (2011)
Chen, Y., Raab, F., Katz, R.: From TPC-C to big data benchmarks: a functional workload model. In: Rabl, T., Poess, M., Baru, C., Jacobsen, H.-A. (eds.) WBDB 2012. LNCS, vol. 8163, pp. 28–43. Springer, Heidelberg (2014)
Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on Cloud Computing. SoCC 2010, Indianapolis, Indiana, USA, 10–11 June 2010, pp. 143–154 (2010)
Dimitrov, M., Kumar, K., Lu, P., Viswanathan, V., Willhalm, T.: Memory system characterization of big data workloads. In: Proceedings of the 2013 IEEE International Conference on Big Data, 6–9 October 2013, Santa Clara, CA, US, pp. 15–22 (2013)
Ferdman, M., Adileh, A., Koçberber, Y.O., Volos, S., Alisafaee, M., Jevdjic, D., Kaynak, C., Popescu, A.D., Ailamaki, A., Falsafi, B.: Clearing the clouds: a study of emerging scale-out workloads on modern hardware. In: Proceedings of the 17th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2012, London, UK, 3–7 March 2012, pp. 37–48 (2012)
Ferrarons, J., Adhana, M., Colmenares, C., Pietrowska, S., Bentayeb, F., Darmont,J.: PRIMEBALL: A parallel processing framework benchmark for big dataapplications in the cloud. In: Performance Characterization and Benchmarking -5th TPC Technology Conference. TPCTC 2013, Trento, Italy, 26 August 2013, pp. 109–124 (2013)
Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., Jacobsen., H.A.: BigBench: towards an industry standard benchmark for big data analytics. In: SIGMOD (2013)
Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The hibench benchmark suite: characterization of the mapreduce-based data analysis. In: Workshops Proceedings of the 26th International Conference on Data Engineering, ICDE 2010, 1–6 March 2010, Long Beach, California, USA, pp. 41–51 (2010)
ICT, Chinese Academy of Sciences: CloudRank-D (2013). http://prof.ict.ac.cn/CloudRank/
ICT, Chinese Academy of Sciences: DCBench (2013). http://prof.ict.ac.cn/DCBench/
ICT, Chinese Academy of Sciences: BigDataBench 3.1 (2015). http://prof.ict.ac.cn/BigDataBench/
Intel: HiBench Suite (2015). https://github.com/intel-hadoop/HiBench
Kim, K., Jeon, K., Han, H., Kim, S.G., Jung, H., Yeom, H.Y.: Mrbench: a benchmark for mapreduce framework. In: 14th International Conference on Parallel and Distributed Systems, ICPADS 2008, Melbourne, Victoria, Australia, 8–10 December 2008, pp. 11–18 (2008)
Kunjir, M., Kalmegh, P., Babu, S.: Thoth: towards managing a multi-system cluster. PVLDB 7(13), 1689–1692 (2014)
Li, M., Tan, J., Wang, Y., Zhang, L., Salapura, V.: Sparkbench: a comprehensive benchmarking suite for in memory data analytic platform spark. In: Proceedings of the 12th ACM International Conference on Computing Frontiers. CF 2015, pp. 53:1–53:8. ACM, New York, NY, USA (2015)
Luo, C., Zhan, J., Jia, Z., Wang, L., Lu, G., Zhang, L., Xu, C., Sun, N.: Cloudrank-d: benchmarking and ranking cloud computing systems for data processing applications. Front. Comput. Sci. 6(4), 347–362 (2012)
Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big data: The Next Frontier for Innovation, Competition, and Productivity. Technical report, McKinsey Global Institute (2011). http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/big_data_the_next_frontier_for_innovation
Li, M.: SparkBench (2015). https://bitbucket.org/lm0926/sparkbench
Ming, Z., Luo, C., Gao, W., Han, R., Yang, Q., Wang, L., Zhan, J.: BDGS: a scalable big data generator suite in big data benchmarking. In: Rabl, T., Raghunath, N., Poess, M., Bhandarkar, M., Jacobsen, H.-A., Baru, C. (eds.) Advancing Big Data Benchmarks. LNCS, vol. 8585, pp. 138–154. Springer, Heidelberg (2013)
MRBS: MRBS (2013). http://sardes.inrialpes.fr/research/mrbs/index.html
Nambiar, R., Poess, M., Dey, A., Cao, P., Magdon-Ismail, T., Qi Ren, D., Bond, A.: Introducing TPCx-HS: the first industry standard for benchmarking big data systems. In: Nambiar, R., Poess, M. (eds.) TPCTC 2014. LNCS, vol. 8904, pp. 1–12. Springer, Heidelberg (2015)
Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign language for data processing. In: Proceedings of the ACM SIGMOD International Conference on Management of Data. SIGMOD 2008, Vancouver, BC, Canada, 10–12 June 2008, pp. 1099–1110 (2008)
Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., López, J., Gibson, G., Fuchs, A., Rinaldi, B.: YCSB++: benchmarking and performance debugging advanced features in scalable table stores. In: ACM Symposium on Cloud Computing in conjunction with SOSP 2011, SOCC 2011, Cascais, Portugal, 26–28 October 2011, p. 9 (2011)
Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S., Stonebraker, M.: A comparison of approaches to large-scale data analysis. In: SIGMOD, pp. 165–178 (2009)
Poggi, N., Carrera, D., Call, A., Mendoza, S., Becerra, Y., Torres, J., Ayguadé, E., Gagliardi, F., Labarta, J., Reinauer, R., Vujic, N., Green, D., Blakeley, J.: ALOJA: a systematic study of hadoop deployment variables to enable automated characterization of cost-effectiveness. In: 2014 IEEE International Conference on Big Data, Big Data 2014, Washington, DC, USA, 27–30 October 2014, pp. 905–913 (2014)
Rabl, T., Frank, M., Sergieh, H.M., Kosch, H.: A data generator for cloud-scale benchmarking. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417, pp. 41–56. Springer, Heidelberg (2011)
Rabl, T., Poess, M.: Parallel data generation for performance analysis of large, complex RDBMS. In: DBTest 2011, p. 5 (2011)
Sakr, S., Casati, F.: Liquid benchmarks: towards an online platform for collaborative assessment of computer science research results. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417, pp. 10–24. Springer, Heidelberg (2011)
Sakr, S., Shafaat, A., Bajaber, F., Barnawi, A., Batarfi, O., Altalhi, A.H.: Liquid benchmarking: a platform for democratizing the performance evaluation process. In: Proceedings of the 18th International Conference on Extending Database Technology, EDBT 2015, Brussels, Belgium, 23–27 March 2015, pp. 537–540 (2015)
Sangroya, A., Serrano, D., Bouchenak, S.: MRBS: A Comprehensive MapReduce Benchmark Suite. Technical report, LIG Grenoble Fr (2012)
Sangroya, A., Serrano, D., Bouchenak, S.: MRBS: towards dependability benchmarking for hadoop MapReduce. In: Caragiannis, I., Alexander, M., Badia, R.M., Cannataro, M., Costan, A., Danelutto, M., Desprez, F., Krammer, B., Sahuquillo, J., Scott, S.L., Weidendorfer, J. (eds.) Euro-Par Workshops 2012. LNCS, vol. 7640, pp. 3–12. Springer, Heidelberg (2013)
Sakr, S.: Liquid benchmarking (2015). http://wiki.liquidbenchmark.net/doku.php/home
Stonebraker, M., Abadi, D.J., DeWitt, D.J., Madden, S., Paulson, E., Pavlo, A., Rasin, A.: Mapreduce and parallel dbmss: friends or foes? Commun. ACM 53(1), 64–71 (2010)
Transaction Processing Performance Council: TPC Benchmark H - Standard Specification, version 2.17.1 (2014)
Transaction Processing Performance Council: TPC Benchmark DS - Standard Specification, version 1.3.1 (2015)
Transaction Processing Performance Council: TPC Express Benchmark HS - Standard Specification, version 1.3.0 (2015)
Wang, L., Zhan, J., Luo, C., Zhu, Y., Yang, Q., He, Y., Gao, W., Jia, Z., Shi, Y., Zhang, S., Zhen, C., Lu, G., Zhan, K., Li, X., Qiu, B.: BigDataBench: a Big Data Benchmark Suite from Internet Services. In: HPCA (2014)
Xiong, W., Yu, Z., Bei, Z., Zhao, J., Zhang, F., Zou, Y., Bai, X., Li, Y., Xu, C.: A characterization of big data benchmarks. In: Proceedings of the 2013 IEEE International Conference on Big Data, 6–9 October 2013, Santa Clara, CA, USA, pp. 118–125 (2013)
Yahoo: YCSB (2015). https://github.com/brianfrankcooper/YCSB
Chen, Y.: Statistical Workload Injector for MapReduce (SWIM) (2013). https://github.com/SWIMProjectUCB/SWIM/wiki
Acknowledgment
This research has been supported by the Research Group of the Standard Performance Evaluation Corporation (SPEC).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Ivanov, T. et al. (2016). Big Data Benchmark Compendium. In: Nambiar, R., Poess, M. (eds) Performance Evaluation and Benchmarking: Traditional to Big Data to Internet of Things. TPCTC 2015. Lecture Notes in Computer Science(), vol 9508. Springer, Cham. https://doi.org/10.1007/978-3-319-31409-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-31409-9_9
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31408-2
Online ISBN: 978-3-319-31409-9
eBook Packages: Computer ScienceComputer Science (R0)