Skip to main content

Approaches for Many-Objective Optimization: Analysis and Comparison on MNK-Landscapes

  • Conference paper
  • First Online:
Artificial Evolution (EA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9554))

  • 582 Accesses

Abstract

This work analyses the behavior and compares the performance of MOEA/D, IBEA using the binary additive \(\varepsilon \) and the hypervolume difference indicators, and A\(\varepsilon \)S\(\varepsilon \)H as representative algorithms of decomposition, indicators, and \(\varepsilon \)-dominance based approaches for many-objective optimization. We use small MNK-landscapes to trace the dynamics of the algorithms generating high-resolution approximations of the Pareto optimal set. Also, we use large MNK-landscapes to analyze their scalability to larger search spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hughes, E.: MSOPS-II: a general-purpose many-objective optimiser. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC ), pp. 3944–3951 (2007)

    Google Scholar 

  2. Zhang, Q., Li, H.: MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  3. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  5. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evol. Comput. 15(1), 1–28 (2007)

    Article  Google Scholar 

  6. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multi-objective optimization. Evol. Comput. 10(3), 263–282 (2002)

    Article  Google Scholar 

  7. Hadka, D., Reed, P.: Borg: an auto-adaptive many-objective evolutionary computing framework. Evol. Comput. 2(2), 231–259 (2013)

    Article  Google Scholar 

  8. Aguirre, H., Oyama, A., Tanaka, K.: Adaptive \(\epsilon \)-sampling and \(\epsilon \)-hood for evolutionary many-objective optimization. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 322–336. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. KanGAL report, 200001 (2000)

    Google Scholar 

  10. Aguirre, H., Tanaka, K.: Insights on properties of multi-objective MNK-landscapes. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 196–203. IEEE Service Center (2004)

    Google Scholar 

  11. Aguirre, H., Liefooghe, A., Verel, S., Tanaka, K.: An analysis on selection for high-resolution approximations in many-objective optimization. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 487–497. Springer, Heidelberg (2014)

    Google Scholar 

  12. Martínez, S.Z., Aguirre, H., Tanaka, K., Coello, C.: On the low-dyscrepancy sequences and their use in MOEA/D for high dimensionality objective spaces. In: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE Press (2015) (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernán Aguirre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Aguirre, H., Zapotecas, S., Liefooghe, A., Verel, S., Tanaka, K. (2016). Approaches for Many-Objective Optimization: Analysis and Comparison on MNK-Landscapes. In: Bonnevay, S., Legrand, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2015. Lecture Notes in Computer Science(), vol 9554. Springer, Cham. https://doi.org/10.1007/978-3-319-31471-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31471-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31470-9

  • Online ISBN: 978-3-319-31471-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics