Skip to main content

A Signature Generation Approach Based on Clustering for Polymorphic Worm

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9565))

Abstract

To prevent worms from propagating rapidly, it is essential to generate worm signatures quickly and accurately. However, existing methods for generating worm signatures either cannot handle noise well or assume there is only one kind of worm sequence in the suspicious flow pool. We propose an approach based on seed extending signature generation (SESG) to generate polymorphic worm signatures from a suspicious flow pool which includes several kinds of worm and noise sequences. The proposed SESG algorithm computes the weight of every sequence, the sequences are queued based on their weight, and then classified. Worm signatures are then generated from the classified worm sequences. We compare SESG with other approaches. SESG can classify worm and noise sequences from a suspicious flow pool, and generate effective worm signatures more easily.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Antonatos, S., Akritidis, P., Markatos, E.P., Anagnostakis, K.G.: Defending against hitlist worms using network address space randomization. Comput. Netw. 51(12), 3471–3490 (2007)

    Article  MATH  Google Scholar 

  2. Bilge, L., Dumitras, T.: Before we knew it: an empirical study of zero-day attacks in the real world. In: Proceedings of ACM Conference on Computer and Communications Security (CCS 2012), New Carolina, pp. 833–844, October 2012

    Google Scholar 

  3. Sun, W.C., Chen, Y.M.: A rough set approach for automatic key attributes indentification of zero-day polymorphic worms. Expert Syst. Appl. 36(3), 4672–4679 (2009)

    Article  Google Scholar 

  4. Mohammed, M.M.Z.E., Chan, H.A., Ventura, N., Hashim, M., Bashier, E.: Fast and accurate detection for polymorphic worms. In: Proceedings of Internetional Conference for Internet Technology and Secured Transactions, pp. 1–6 (2010)

    Google Scholar 

  5. Comar, P.M., Liu, L., Saha, S., Tan, P.N., Nucci, A.: Combining supervised and unsupervised learning for zero-day malware detection. In: Proceedings of 32nd Annual IEEE International Conference on Computer Communications (INFOCOM 2013), Turin, Italy, pp. 2022–2030, April 2013

    Google Scholar 

  6. Bayoglu, B., Sogukpinar, L.: Graph based signature classes for detecting polymorphic worms via content analysis. Comput. Netw. 56(2), 832–844 (2012)

    Article  Google Scholar 

  7. Tang, Y., Xiao, B., Lu, X.: Signature tree generation for polymorphic worms. IEEE Trans. Comput. 60(4), 565–579 (2011)

    Article  MathSciNet  Google Scholar 

  8. Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., Rajarajan, M.: A survey of intrusion detection techniques in cloud. J. Netw. Comput. Appl. 36(1), 42–57 (2013)

    Article  Google Scholar 

  9. Cai, M., Hwang, K., Pan, J., Christos, P.: WormShield: fast worm signature generation with distributed fingerprint aggregation. IEEE Trans. Dependable Secure Comput. 5(2), 88–104 (2007)

    Article  Google Scholar 

  10. Ranjan, S., Shah, S., Nucci, A., Munafo, M., Cruz, R., Muthukrishnan, S.: DoWitcher: effective worm detection and containment in the internet core. In: IEEE Infocom, Anchorage, Alaskapp, pp. 2541–2545 (2007)

    Google Scholar 

  11. Portokalidis, G., Bos, H.: SweetBait: zero-hour worm detection and containment using low- and high-interaction honeypots. Comput. Netw. 51(11), 1256–1274 (2007)

    Article  MATH  Google Scholar 

  12. Yegneswaran, V., et al.: An architecture for generating semantics-aware signatures. In: Proceedings of the 14th conference on USENIX Security Symposium. USENIX Association, Berkeley (2005)

    Google Scholar 

  13. Newsome, J., Karp, B., Song, D.: Polygraph: automatically generation signatures for polymorphic worms. In: Proceedings of 2005 IEEE Symposium on Security and Privacy Symposium, Oakland, pp. 226–241 (2005)

    Google Scholar 

  14. Li, Z., Sanghi, M., Chen, Y., Kao, M., Chavez, B.: Hamsa: fast signature generation for zero-day polymorphic worms with provable attack resilience. In: Proceedings of IEEE Symposium on Security and Privacy, Washington, DC, pp. 32–47 (2006)

    Google Scholar 

  15. Cavallaro, L., Lanzi, A., Mayer, L., Monga, M.: LISABETH: automatedcontent-based signature generator for zero-day polymorphic worms. In: Proceedings of the Fourth International Workshop on Software Engineering for Secure Systems, Leipzig, pp. 41–48 (2008)

    Google Scholar 

  16. Bayoglu, B., Sogukpinar, L.: Polymorphic worm detection using token-pair signatures. In: Proceedings of the 4th International Workshop on Security, Privacy and Trust in Pervasive and Ubiquitous Computing, Sorrento, Italy, pp. 7–12 (2008)

    Google Scholar 

  17. Wang, J., Wang, J.X., Chen, J.E., Zhang, X.: An automated signature generation approach for polymorphic worm based on color coding. J. Softw. 21(10), 2599–2609 (2010)

    Google Scholar 

  18. Tang, Y., Xiao, B., Lu, X.: Using a bioinformatics approach to generate accurate exploit-based signatures for polymorphic worms. Comput. Secur. 288, 827–842 (2009)

    Article  Google Scholar 

  19. Tang, Y., Chen, S.: An automated signature-based approach against polymorphic internet worms. IEEE Trans. Parallel Distrib. Syst. 18, 879–892 (2007)

    Article  Google Scholar 

  20. Wang, J., Wang, J.X., Sheng, Y., Chen, J.E.: Novel approach based on neighborhood relation signature against polymorphic internet worms. J. Commun. 32(8), 150–158 (2011)

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China under Grant No.61202495.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, J., He, X. (2016). A Signature Generation Approach Based on Clustering for Polymorphic Worm. In: Yung, M., Zhang, J., Yang, Z. (eds) Trusted Systems. INTRUST 2015. Lecture Notes in Computer Science(), vol 9565. Springer, Cham. https://doi.org/10.1007/978-3-319-31550-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31550-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31549-2

  • Online ISBN: 978-3-319-31550-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics