Skip to main content

Prioritization of Schizophrenia Risk Genes by a Network-Regularized Logistic Regression Method

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9656))

Included in the following conference series:

Abstract

Schizophrenia (SCZ) is a severe mental disorder with a large genetic component. While recent large-scale microarray- and sequencing-based genome wide association studies have made significant progress toward finding SCZ risk variants and genes of subtle effect, the interactions among them were not considered in those studies. Using a protein-protein interaction network both in our regression model and to generate a SCZ gene subnetwork, we developed an analytical framework with Logit-Lapnet, the graphical Laplacian-regularized logistic regression, for whole exome sequencing (WES) data analysis to detect SCZ gene subnetworks. Using simulated data from sequencing-based association study, we compared the performances of Logit-Lapnet with other logistic regression (LR)-based models. We use Logit-Lapnet to prioritize genes according to their coefficients and select top-ranked genes as seeds to generate the gene sub-network that is associated to SCZ. The comparison demonstrated not only the applicability but also better performance of Logit-Lapnet to score disease risk genes using sequencing-based association data. We applied our method to SCZ whole exome sequencing data and selected top-ranked risk genes, the majority of which are either known SCZ genes or genes potentially associated with SCZ. We then used the seed genes to construct SCZ gene subnetworks. This result demonstrates that by ranking gene according to their disease contributions our method scores and thus prioritizes disease risk genes for further investigation. An implementation of our approach in MATLAB is freely available for download at: http://zdzlab.einstein.yu.edu/1/publications/LapNet-MATLAB.zip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asimit, J., Zeggini, E.: Rare variant association analysis methods for complex traits. Ann. Rev. Genet. 44, 293–308 (2010)

    Article  Google Scholar 

  • Bansal, V., Libiger, O., Torkamani, A., Schork, N.J.: Statistical analysis strategies for association studies involving rare variants. Nature Rev. Genet. 11, 773–785 (2010)

    Article  Google Scholar 

  • Basu, S., Pan, W.: Comparison of statistical tests for disease association with rare variants. Genet. Epidemiol. 35, 606–619 (2011)

    Article  Google Scholar 

  • Bergen, S.E., O’Dushlaine, C.T., Ripke, S., Lee, P.H., Ruderfer, D.M., Akterin, S., Moran, J.L., Chambert, K.D., Handsaker, R.E., Backlund, L., et al.: Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder. Mol. Psychiatry 17, 880–886 (2012)

    Article  Google Scholar 

  • Betcheva, E.T., Yosifova, A.G., Mushiroda, T., Kubo, M., Takahashi, A., Karachanak, S.K., Zaharieva, I.T., Hadjidekova, S.P., Dimova, I.I., Vazharova, R.V., et al.: Whole-genome-wide association study in the Bulgarian population reveals HHAT as schizophrenia susceptibility gene. Psychiatr. Genet. 23, 11–19 (2013)

    Article  Google Scholar 

  • Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., et al.: The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011)

    Article  Google Scholar 

  • Darves-Bornoz, J.M., Lemperiere, T., Degiovanni, A., Gaillard, P.: Sexual victimization in women with schizophrenia and bipolar disorder. Soc. Psychiatry Psychiat. Epidemiol. 30, 78–84 (1995)

    Article  Google Scholar 

  • Das, J., Yu, H.: HINT: High-quality protein interactomes and their applications in understanding human disease. BMC Syst. Biol. 6, 92 (2012)

    Article  Google Scholar 

  • Gibson, G.: A primer of human genetics (Sinauer Associates, Inc.) (2014)

    Google Scholar 

  • Goh, K.I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabasi, A.L.: The human disease network. Proc. National Acad. Sci. US Am. 104, 8685–8690 (2007)

    Article  Google Scholar 

  • Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1 (2014)

    Google Scholar 

  • Hoffman, G.E., Logsdon, B.A., Mezey, J.G.: PUMA: A unified framework for penalized multiple regression analysis of GWAS data. PLoS Comput. Biol. 9, e1003101 (2013)

    Article  Google Scholar 

  • Hu, J., Ng, P.C.: SIFT Indel: Predictions for the functional effects of amino acid insertions/deletions in proteins. PLoS ONE 8, e77940 (2013)

    Article  Google Scholar 

  • Huang, J., Perlis, R.H., Lee, P.H., Rush, A.J., Fava, M., Sachs, G.S., Lieberman, J., Hamilton, S.P., Sullivan, P., Sklar, P., et al.: Cross-disorder genomewide analysis of schizophrenia, bipolar disorder, and depression. Am. J. Psychiatry 167, 1254–1263 (2010)

    Article  Google Scholar 

  • Irish Schizophrenia Genomics, C., and the Wellcome Trust Case Control, C. Genome-wide association study implicates HLA-C*01:02 as a risk factor at the major histocompatibility complex locus in schizophrenia. Biological psychiatry 72, 620–628 (2012)

    Google Scholar 

  • Jeffrey, A., Lieberman, T.S.S., Perkins, D.O.: Textbook of Schizophrenia, The American Psychiatric Publishing, Arlington, Virginia, USA (2006)

    Google Scholar 

  • Jia, P., Sun, J., Guo, A.Y., Zhao, Z.: SZGR: A comprehensive schizophrenia gene resource. Mol. Psychiatry 15, 453–462 (2010)

    Article  Google Scholar 

  • Kim, S., Jeong, K., Bafna, V.: Wessim: A whole-exome sequencing simulator based on in silico exome capture. Bioinformatics 29, 1076–1077 (2013)

    Article  Google Scholar 

  • Kolde, R., Laur, S., Adler, P., Vilo, J.: Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics 28, 573–580 (2012)

    Article  Google Scholar 

  • Larson, N.B., Schaid, D.J.: Regularized rare variant enrichment analysis for case-control exome sequencing data. Genet. Epidemiol. 38, 104–113 (2014)

    Article  Google Scholar 

  • Lemetre, C., Zhang, Q., Zhang, Z.D.: SubNet: A Java application for subnetwork extraction. Bioinformatics 29, 2509–2511 (2013)

    Article  Google Scholar 

  • Li, C., Li, H.: Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 24, 1175–1182 (2008)

    Article  Google Scholar 

  • Ng, S.B., Turner, E.H., Robertson, P.D., Flygare, S.D., Bigham, A.W., Lee, C., Shaffer, T., Wong, M., Bhattacharjee, A., Eichler, E.E., et al.: Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461, 272–276 (2009)

    Article  Google Scholar 

  • Pinero, J., Queralt-Rosinach, N., Bravo, A., Deu-Pons, J., Bauer-Mehren, A., Baron, M., Sanz, F., Furlong, L.I.: DisGeNET: A discovery platform for the dynamical exploration of human diseases and their genes. Database J. Biol. Databases Curation 2015, 28 (2015)

    Google Scholar 

  • Pletscher-Frankild, S., Palleja, A., Tsafou, K., Binder, J.X., Jensen, L.J.: DISEASES: Text mining and data integration of disease-gene associations. Methods 74, 83–89 (2015)

    Article  Google Scholar 

  • Purcell, S.M., Moran, J.L., Fromer, M., Ruderfer, D., Solovieff, N., Roussos, P., O’Dushlaine, C., Chambert, K., Bergen, S.E., Kahler, A., et al.: A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506, 185–190 (2014)

    Article  Google Scholar 

  • Rappaport, N., Twik, M., Nativ, N., Stelzer, G., Bahir, I., Stein, T.I., Safran, M., Lancet, D.: Malacards: A comprehensive automatically-mined database of human diseases. Current protocols in bioinformatics/editoral board, Andreas D Baxevanis [et al.] 47, 1 24 21–21 24 19 (2014)

    Google Scholar 

  • Regier, D.A., Narrow, W.E., Rae, D.S., Manderscheid, R.W., Locke, B.Z., Goodwin, F.K.: The de facto US mental and addictive disorders service system. Epidemiologic catchment area prospective 1-year prevalence rates of disorders and services. Arch. Gen. Psychiatry 50, 85–94 (1993)

    Article  Google Scholar 

  • Sachdev, P.S., Keshavan, M.S.: Secondary Schizophrenia. United Kingdom at the University Press, Cambridge (2010)

    Book  Google Scholar 

  • Schadt, E.E., Linderman, M.D., Sorenson, J., Lee, L., Nolan, G.P.: Computational solutions to large-scale data management and analysis. Nature Rev. Genet. 11, 647–657 (2010)

    Article  Google Scholar 

  • Schizophrenia Working Group of the Psychiatric Genomics Consortium: Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014)

    Article  Google Scholar 

  • Shi, J., Levinson, D.F., Duan, J., Sanders, A.R., Zheng, Y., Pe’er, I., Dudbridge, F., Holmans, P.A., Whittemore, A.S., Mowry, B.J., et al.: Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460, 753–757 (2009)

    Google Scholar 

  • Shi, Y., Li, Z., Xu, Q., Wang, T., Li, T., Shen, J., Zhang, F., Chen, J., Zhou, G., Ji, W., et al.: Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nat. Genet. 43, 1224–1227 (2011)

    Article  Google Scholar 

  • Sim, N.L., Kumar, P., Hu, J., Henikoff, S., Schneider, G., Ng, P.C.: SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 40, W452–W457 (2012)

    Article  Google Scholar 

  • Stitziel, N.O., Kiezun, A., Sunyaev, S.: Computational and statistical approaches to analyzing variants identified by exome sequencing. Genome Biol. 12, 227 (2011)

    Article  Google Scholar 

  • Walsh, T., McClellan, J.M., McCarthy, S.E., Addington, A.M., Pierce, S.B., Cooper, G.M., Nord, A.S., Kusenda, M., Malhotra, D., Bhandari, A., et al.: Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320, 539–543 (2008)

    Article  Google Scholar 

  • Wan, Y.W., Nagorski, J., Allen, G.I., Li, Z.H., Liu, Z.D.: Identifying cancer biomarkers through a network regularized Cox model. Genomic Signal Processing and Statistics (GENSIPS), 2013 IEEE International Workshop on (Houston, pp. 36–39. IEEE, TX (2013)

    Chapter  Google Scholar 

  • Wang, K., Li, M., Hakonarson, H.: ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010)

    Article  Google Scholar 

  • Wong, E.H., So, H.C., Li, M., Wang, Q., Butler, A.W., Paul, B., Wu, H.M., Hui, T.C., Choi, S.C., So, M.T., et al.: Common variants on Xq28 conferring risk of schizophrenia in Han Chinese. Schizophr. Bull. 40, 777–786 (2014)

    Article  Google Scholar 

  • Zhang, W., Wan, Y.W., Allen, G.I., Pang, K., Anderson, M.L., Liu, Z.: Molecular pathway identification using biological network-regularized logistic models. BMC Genom. 14(Suppl 8), S7 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH Pathway to Independence Award from National Library of Medicine (5R00LM009770-06) and the American Heart Association Grant-in-Aid (13GRNT16850016) to Z.D.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengdong D. Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 708 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, W., Lin, JR., Nogales-Cadenas, R., Zhang, Q., Cai, Y., Zhang, Z.D. (2016). Prioritization of Schizophrenia Risk Genes by a Network-Regularized Logistic Regression Method. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2016. Lecture Notes in Computer Science(), vol 9656. Springer, Cham. https://doi.org/10.1007/978-3-319-31744-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31744-1_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31743-4

  • Online ISBN: 978-3-319-31744-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics