Skip to main content

The Effect of Transcranial Direct Current Stimulation (tDCS) Over Human Motor Function

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2016)

Abstract

Transcranial Direct Current Stimulation (tDCS) is a non-invasive, weak cortical neurostimulation technique which implements direct currents through two electrodes with opposite polarization when both are placed over a conductive surface (e.g. the scalp). It has demonstrated positive effects in a wide range of psychopathologies and neurological disorders in the last 15 years, being its neurophysiological modulatory effect on neuro-motor impairments one of the most important targets in tDCS researching. Thus, different motor-related pathologies have been improved by tDCS, such motor alterations after stroke, Parkinson’s disease, cerebral palsy in childhood, multiple sclerosis, etc. The positive effects of tDCS on motor abilities, both pathological condition or in healthy population, define it as an interesting option to induce neurophysiological changes complementing the traditional rehabilitation procedures. The comprehension of its neurophysiological and biochemical effects, the development of more ideographic procedures, and its integration with pharmacological treatments are mandatory in order to further improve its usage in rehabilitation approaches.

C. Pérez-Fernández1, A. Sánchez-Kuhn contributed equally to the present manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Largus, S.: De Compositionibus Medicamentorum. Wechel, Paris (1529)

    Google Scholar 

  2. Kellaway, P.: The part played by the electric fish in the early history of bioelectricity and electrotherapy. Bull. Hist. Med. 20, 112–137 (1946)

    Google Scholar 

  3. Zago, S., Ferrucci, R., Fregni, F., Priori, A.: Bartholow, Sciamanna, Alberti: pioneers in the electrical stimulation of the exposed human cerebral cortex. Neurosci. 14(5), 521–528 (2008)

    Google Scholar 

  4. Priori, A., Hallett, M., Rothwell, J.C.: Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimul. 2(4), 241–245 (2009)

    Article  Google Scholar 

  5. Pascual-Leone, A., Tormos-Muñoz, J.M.: Estimulación magnética transcraneal: fundamentos y potencial de la modulación de redes neurales específicas. Rev Neurol 46(S1), S3–S10 (2008)

    Google Scholar 

  6. Kobayashi, M., Pascual-Leone, A.: Transcranial magnetic stimulation in neurology. Lancet Neurol. 2(3), 145–156 (2003)

    Article  Google Scholar 

  7. Nitsche, M.A., Cohen, L.G., Wassermann, E.M., Priori, A., Lang, N., Antal, A., et al.: Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 1(3), 206–223 (2008)

    Article  Google Scholar 

  8. George, M.S., Aston-Jones, G.: Noninvasive techniques for probing neurocircuitry and treating illness: vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Neuropsychopharmacol. 35(1), 301–316 (2010)

    Article  Google Scholar 

  9. Ruffini, G., Wendling, F., Merlet, I., Molaee-Ardekani, B., Mekonnen, A., Salvador, R., et al.: Transcranial current brain stimulation (tCS): models and technologies. IEEE Trans Neural Syst Rehab Eng. 21(2), 333–345 (2013)

    Article  Google Scholar 

  10. Costa, T., Lapenta, O., Boggio, P., Ventura, D.: Transcranial direct current stimulation as a tool in the study of sensory-perceptual processing. Atten., Percept., Psychophys. 77(6), 1813–1840 (2015)

    Article  Google Scholar 

  11. Nitsche, M.A., Doemkes, S., Karaköse, T., Antal, A., Liebetanz, D., Lang, N., et al.: Shaping the effects of transcranial direct current stimulation of the human motor cortex. J. Neurophysiol. 97(4), 3109–3117 (2007)

    Article  Google Scholar 

  12. Bastani, A., Jaberzadeh, S.: a-tDCS differential modulation of corticospinal excitability: The effects of electrode size. Brain Stimul. 6(6), 932–937 (2013)

    Article  Google Scholar 

  13. Faria, P., Hallett, M., Miranda, P.C.: A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS. J. Neural Eng. 8(6), 1–24 (2011)

    Article  Google Scholar 

  14. Minhas, P., Datta, A., Bikson, M.: Cutaneous perception during tDCS: Role of electrode shape and sponge salinity. Clin. Neurophysiol. 122(4), 637–638 (2011)

    Article  Google Scholar 

  15. Bikson, M., Datta, A., Elwassif, M.: Establishing safety limits for transcranial direct current stimulation. Clin. Neurophysiol. 120(6), 1033–1034 (2009)

    Article  Google Scholar 

  16. Nitsche, M.A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., et al.: Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. 553(pt1), 293–301 (2003)

    Article  Google Scholar 

  17. Nitsche, M.A., Niehaus, L., Hoffmann, K.T., Hengst, S., Liebetanz, D., Paulus, W., et al.: MRI study of human brain exposed to weak direct current stimulation of the frontal cortex. Clin. Neurophysiol. 115(10), 2419–2423 (2004)

    Article  Google Scholar 

  18. Kwon, Y.H., Ko, M.H., Ahn, S.H., Kim, Y.H., Song, J.C., Lee, C.H., et al.: Primary motor cortex activation by transcranial direct current stimulation in the human brain. Neurosci Lett. 435(1), 56–59 (2008)

    Article  Google Scholar 

  19. Lang, N., Siebner, H.R., Ward, N.S., Lee, L., Nitsche, M.A., Paulus, W., et al.: How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Euro J. Neurosci. 22(2), 495–504 (2005)

    Article  Google Scholar 

  20. Ardolino, G., Bossi, B., Barbieri, S., Priori, A.: Non-synaptic mechanism sunderlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. J. Physiol. 568, 653–663 (2005)

    Article  Google Scholar 

  21. Lefaucheur, J.P.: Principles of therapeutic use of transcranial and epidural cortical stimulation. Clin. Neurophysi. 119(10), 2179–2184 (2008)

    Article  Google Scholar 

  22. Boggio, P.S., Zaghi, S., Fregni, F.: Modulation of emotions associated with images of human pain using anodal transcranial direct current stimulation (tDCS). Neuropsychol. 47(1), 212–217 (2009)

    Article  Google Scholar 

  23. Boggio, P.S., Zaghi, S., Lopes, M., Fregni, F.: Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers. Eur. J. Neurol. 15(10), 1124–1130 (2008)

    Article  Google Scholar 

  24. Miranda, P.C., Lomarev, M., Hallett, M.: Modeling the current distribution during transcranial direct current stimulation. Clin. Neurophysiol. 117(7), 1623–1629 (2006)

    Article  Google Scholar 

  25. Nitsche, M.A., Paulus, W.: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurol. 57(10), 1899–1901 (2001)

    Article  Google Scholar 

  26. Been, G., Ngo, T.T., Miller, S.M., Fitzgerald, P.B.: The use of tDCS and CVS as methods of non-invasive brain stimulation. Brain Res. Rev. 56(2), 346–361 (2007)

    Article  Google Scholar 

  27. Parasuraman, R., McKinley, R.A.: Using noninvasive brain stimulation to accelerate learning and enhance human performance. Hum. Factors J. Hum. Factor Ergon. Soc. 56(5), 816–824 (2014)

    Article  Google Scholar 

  28. Rango, M., Cogiamanian, F., Marceglia, S., Barberis, B., Arighi, A., Biondetti, P., et al.: Myoinositol content in the human brain is modified by transcranial direct current stimulation in a matter of minutes: a 1H-MRS study. Magn. Reson. Med. 60(4), 782–789 (2008)

    Article  Google Scholar 

  29. Merzagora, A.C., Foffani, G., Panyavin, I., Mordillo-Mateos, L., Aguilar, J., Onaral, B., et al.: Prefrontal hemodynamic changes produced by anodal direct current stimulation. Neuroimage. 49(3), 2304–2310 (2010)

    Article  Google Scholar 

  30. Molaee-Ardekani, B., Márquez-Ruiz, J., Leal-Campanario, R., Gruart, A., Merlet, I., Birot, G., et al.: Effects of transcranial direct current stimulation (tDCS) on sensory evoked potentials: a computational modeling study. Brain Stimul. 6(1), 25–39 (2013)

    Article  Google Scholar 

  31. Chaieb, L., Antal, A., Paulus, W.: Gender-specific modulation of short-term neuroplasticity in the visual cortex induced by transcranial direct current stimulation. Visual Neurosci. 25(1), 77–81 (2008)

    Article  Google Scholar 

  32. Fritsch, B., Reis, J., Martinowich, K., Schambra, H.M., Ji, Y., Cohen, L.G., et al.: Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66(2), 198–204 (2010)

    Article  Google Scholar 

  33. Liebetanz, D., Nitsche, M.A., Tergau, F., Paulus, W.: Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain. 125(pt10), 2238–2247 (2002)

    Article  Google Scholar 

  34. Charlotte, J.S., Jonathan, G.B., Stephenson, M.C., O’Shea, J., Wylezinska, M., Kincses, Z.T., et al.: Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J. Neurosc. 29(16), 5202–5206 (2009). doi:10.1523/JNEUROSCI.4432-08.2009

    Article  Google Scholar 

  35. Nitsche, M.A., Grundey, J., Liebetanz, D., Lang, N., Tergau, F., Paulus, W.: Catecholaminergic consolidation of motor cortical neuroplasticity in humans. Cereb. Cortex 14(11), 1240–1245 (2004)

    Article  Google Scholar 

  36. Nitsche, M.A., Kuo, M.F., Karrasch, R., Wachter, B., Liebetanz, D., Paulus, W.: Serotonin affects transcranial direct current-induced neuroplasticity in humans. Biol. Psychiatry 66(5), 503–508 (2009)

    Article  Google Scholar 

  37. Izumi, Y., Zorumski, C.F.: Direct cortical inputs erase long-term potentiation at Schaffer collateral synapses. J. Neurosci. 28(38), 9557–9563 (2008)

    Article  Google Scholar 

  38. Márquez-Ruiz, J., Leal-Campanario, R., Sánchez-Campusano, R., Molaee-Ardekani, B., Wendling, F., Miranda, P., et al.: Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. PNAS 109(17), 6710–6715 (2012)

    Article  Google Scholar 

  39. Kuo, M.F., Paulus, W., Nitsche, M.A.: Boosting focally-induced brain plasticity by dopamine. Cereb. Cortex 18(3), 648–651 (2008)

    Article  Google Scholar 

  40. Poreisz, C., Boros, K., Antal, A., Paulus, W.: Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res. Bull. 72(4–6), 208–214 (2007)

    Article  Google Scholar 

  41. Nitsche, M.A., Paulus, W.: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527, 633–639 (2000)

    Article  Google Scholar 

  42. Iyer, M.B., Mattu, U., Grafman, J., Lomarev, M., Sato, S., Wassermann, E.M.: Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology. 64(5), 872–875 (2005)

    Article  Google Scholar 

  43. Wassermann, E.M., Grafman, J.: Recharging cognition with DC brain polarization. Trends Cogn. Sci. 9(11), 503–505 (2005)

    Article  Google Scholar 

  44. Vandermeeren, Y., Jamart, J., Ossemann, M.: Effect of tDCS with an extracephalic reference electrode on cardio-respiratory and autonomic functions. BMC Neurosci. 11, 38 (2010)

    Article  Google Scholar 

  45. Palm, U., Keeser, D., Schiller, C., Fintescu, Z., Reisinger, E., Padberg, F., et al.: Skin lesions after treatment with trancranial direct current stimulation (tDCS). Brain Stimul. 1(4), 386–387 (2008)

    Article  Google Scholar 

  46. Tanaka, S., Watanabe, K.: Transcranial direct current stimulation: a new tool for human cognitive neuroscience. Brain Nerve 61, 53–64 (2009)

    Google Scholar 

  47. Lindenberg, R., Renga, V., Zhu, L.L., Nair, D., Schlaug, G.: Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology. 75(24), 2176–2184 (2010)

    Article  Google Scholar 

  48. Schlaug, G., Renga, V., Nair, D.: Transcranial direct current stimulation in stroke recovery. Arch. Neurol. 65(12), 1571–1576 (2008)

    Article  Google Scholar 

  49. O’Shea, J., Boudrias, M.H., Stagg, C.J., Bachtiar, V., Kischka, U., Blicher, J.U., et al.: Predicting behavioral response to TDCS in chronic motor stroke. NeuroImage. 85, 924–933 (2014)

    Article  Google Scholar 

  50. Hummel, F., Celnik, P., Giraux, P., Floel, A., Wu, W.H., Gerloff, C., et al.: Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain. 128(3), 490–499 (2005)

    Article  Google Scholar 

  51. Sattler, V., Acket, B., Gerdelat-Mas, A., Raposo, N., Albucher, J.F., Thalamas, C., et al.: Effect of repeated sessions of combined anodal tDCS and peripheral nerve stimulation on motor performance in acute stroke: A behavioral and electrophysiological study. Ann Phys Rehab Med. 55(S1), S5–S6 (2012)

    Article  Google Scholar 

  52. Rosso, C., Perlbarg, V., Valabregue, R., Arbizu, C., Ferrieux, S., Alshawan, B., et al.: Broca’s area damage is necessary but not sufficient to induce after-effects of cathodal tDCS on the unaffected hemisphere in post-stroke aphasia. Brain Stimul. 7(5), 627–635 (2014)

    Article  Google Scholar 

  53. Málly, J.: Non-invasive brain stimulation (rTMS and tDCS) in patients with aphasia: Mode of action at the cellular level. Brain Res. Bull. 98, 30–35 (2013)

    Article  Google Scholar 

  54. Gordon, C., Hewer, R.L., Wade, D.T.: Dysphagia in Acute Stroke. Br. Med. J. (Clin. Res. Ed). 295, 411–414 (1987)

    Article  Google Scholar 

  55. Barer, D.H.: The Natural History and Functional Consequences of Dysphagia after Hemispheric Stroke. J. Neurol. Neurosurg. Psychiatry 52(2), 236–241 (1989)

    Article  Google Scholar 

  56. Martin, R.E., Sessle, B.J.: The Role of the Cerebral Cortex in Swallowing. Dysphagia 8(3), 195–202 (1993)

    Article  Google Scholar 

  57. Hamdy, S., Rothwell, J.C., Aziz, Q., Thompson, D.G.: Organization and reorganization of human swallowing motor cortex: implications for recovery after stroke. Clin. Sci. 99(2), 151–157 (2000)

    Article  Google Scholar 

  58. Sandrini, M., Cohen, L.G.: Noninvasive brain stimulation in neurorehabilitation. Handb Clin. Neurol. 116, 499–524 (2013)

    Article  Google Scholar 

  59. Kumar, S., Wagner, C.W., Frayne, C., Zhu, L., Selim, M., Feng, W., et al.: Noninvasive brain stimulation may improve stroke-related dysphagia: a pilot study. Stroke 42(4), 1035–1040 (2011)

    Article  Google Scholar 

  60. Yang, E.J., Baek, S.R., Shin, J., Lim, J.Y., Jang, H.J., Kim, Y.K., et al.: Effects of transcranial direct current stimulation (tDCS) on post-stroke dysphagia. Restor Neurol Neurosci. 30(4), 303–311 (2012)

    Google Scholar 

  61. Broeder, S., Nackaerts, E., Heremans, E., Vervoort, G., Meesen, R., Verheyden, G., et al.: Transcranial direct current stimulation in Parkinson’s disease: Neurophysiological mechanisms and behavioral effects. Neurosci. Biobehav. Rev. 57, 105–117 (2015)

    Article  Google Scholar 

  62. Fregni, F., Boggio, P.S., Santos, M.C., Lima, M., Vieira, A.L., Rigonatti, S.P., et al.: Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov. Disord. 21, 1693–1702 (2006)

    Article  Google Scholar 

  63. Valentino, F., Cosentino, G., Brighina, F., Pozzi, N.G., Sandrini, G., Fierro, B., et al.: Transcranial direct currentstimulation for treatment of freezing of gait: a cross-over study. Mov. Disord. 29, 1064–1069 (2014)

    Article  Google Scholar 

  64. Benninger, D.H., Lomarev, M., Lopez, G., Wassermann, E.M., Li, X., Considine, E., et al.: Transcranial direct current stimulation for the treatment of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 81, 1105–1111 (2010)

    Article  Google Scholar 

  65. Kaski, D., Allum, J.H., Bronstein, A.M., Dominguez, R.O.: Applying anodal tDCS during tango dancing in a patient with Parkinson’s disease. Neurosci. Lett. 568, 39–43 (2014)

    Article  Google Scholar 

  66. Pereira, J.B., Junqué, C., Bartrés-Faz, D., Martí, M.J., Sala-Llonch, R., Compta, Y.: Modulation of verbal fluency networks by transcranial direct current stimulation (tDCS) in Parkinson’s disease. Brain Stimul. 6, 16–24 (2013)

    Article  Google Scholar 

  67. Mehta, S., McIntyre, A., Guy, S., Teasell, R.W., Loh, E.: Effectiveness of transcranial direct current stimulation for the management of neuropathic pain after spinal cord injury: a meta-analysis. Spinal Cord. 53(11), 780–785 (2015)

    Article  Google Scholar 

  68. Silva, F.T.G., Rêgo, J.T.P., Raulino, F.R., Silva, M.R., Reynaud, F., Egito, E.S.T., et al.: Transcranial direct current stimulation on the autonomic modulation and exercise time in individuals with spinal cord injury: A case report. Autonomic Neurosci : Basic Clin. 193, 152–155 (2015)

    Article  Google Scholar 

  69. Murray, L.M., Edwards, D.J., Ruffini, G., Labar, D., Stampas, A., Pascual-Leone, A., et al.: Intensity dependent effects of transcranial direct current stimulation on corticospinal excitability in chronic spinal cord injury. Arch. Phys. Med. Rehab. 96(4 Suppl), S114–S121 (2015)

    Article  Google Scholar 

  70. Hubli, M., Dietz, V., Schrafl-Altermatt, M., Bolliger, M.: Modulation of spinal neuronal excitability by spinal direct currents and locomotion after spinal cord injury. Clin Neurophysiol: Off. J. Inter. Fed. Clin. Neurophysiol. 124(6), 1187–1195 (2013)

    Article  Google Scholar 

  71. Cogiamanian, F., Vergari, M., Pulecchi, F., Marceglia, S., Priori, A.: Effect of spinal transcutaneous direct current stimulation on somatosensory evoked potentials in humans. Clin Neurophysiol: Off. J. Inter. Fed. Clin. Neurophysiol. 119(11), 2636–2640 (2008)

    Article  Google Scholar 

  72. de Almeida, J.R., Guyatt, G.H., Sud, S., Dorion, J., Hill, M.D., Kolber, M.R., et al.: Management of bell palsy: clinical practice guideline. CMAJ 186, 917–922 (2014)

    Article  Google Scholar 

  73. Swaiman, K.F.: Cerebral palsy. In: Swaiman, K.F., Ashwal, S., Ferriero, D.M., Schor, N.F. (eds.) Swaiman’s Pediatric Neurology: Principles and Practice, 5th edn, pp. 999–1008. St. Louis: Elsevier, New York (2012)

    Chapter  Google Scholar 

  74. Minhas, P., Bikson, M., Woods, A.J., Rosen, A.R., Kessler, S.K.: Transcranial direct current stimulation in pediatric brain: a computational modeling study. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2012)

    Google Scholar 

  75. Bax, M., Tydeman, C., Flodmark, O.: Clinical and MRI correlates of cerebral palsy: the european cerebral palsy study. JAMA 296, 1602–1608 (2006)

    Article  Google Scholar 

  76. Lance, J.W.: Pathophysiology of Spasticity and Clinical Experience with Baclofen. In: Feldman, R.G., Young R.R., Koella, W.P., (eds.) Spasticity, Disordered Motor Control. Miami, FL: Symposia Specialists, pp. 185–203 (1980)

    Google Scholar 

  77. Aree-uea, B., Auvichayapat, N., Janyacharoen, T., Siritaratiwat, W., Amatachaya, A., Prasertnoo, J., et al.: Reduction of spasticity in cerebral palsy by anodal transcranial direct current stimulation. J. Med. Assoc. Thai. 97(9), 954–962 (2014)

    Google Scholar 

  78. Lazzari, R.D., Politti, F., Santos, C.A., Dumont, A.J.L., Rezende, F.L., Grecco, L.A.C., et al.: Effect of a single session of transcranial direct-current stimulation combined with virtual reality training on the balance of children with cerebral palsy: a randomized, controlled, double-blind trial. J. Phys Ther. Sci. 27(3), 763–768 (2015)

    Article  Google Scholar 

  79. Grecco, L.A.C., de Almeida, N., Mendonça, M.E., Galli, M., Fregni, F., Santos, C.: Effects of anodal transcranial direct current stimulation combined with virtual reality for improving gait in children with spastic diparetic cerebral palsy: a pilot, randomized, controlled, double-blind, clinical trial. Clin Rehabil. 29(12), 1212–1223 (2015)

    Article  Google Scholar 

  80. Palm, U., Ayache, S.S., Padberg, F., Lefaucheur, J.-P.: Non-invasive brain stimulation therapy in multiple sclerosis: a review of tDCS, rTMS and ECT results. Brain Stimul. 7(6), 849–854 (2014)

    Article  Google Scholar 

  81. Cuypers, K., Leenus, D.J.F., Van Wijmeersch, B., Thijs, H., Levin, O., Swinnen, S.P., et al.: Anodal tDCS increases corticospinal output and projection strength in multiple sclerosis. Neurosci. Lett. 554, 151–155 (2013)

    Article  Google Scholar 

  82. Meesen, R.L.J., Thijs, H., Daphnie, J.F., Leenus, D.J.F., Cuyper, K.: A single session of 1 mA anodal tDCS-supported motor training does not improve motor performance in patients with multiple sclerosis. Restore Neurol Neurosci. 32(2), 293–300 (2014)

    Google Scholar 

  83. Mori, F., Nicoletti, C.G., Kusayanagi, H., Foti, C., Restivo, D.A., Marciani, M.G., et al.: transcranial direct current stimulation ameliorates tactile sensory deficit in multiple sclerosis. Brain Stimul. 6(4), 654–659 (2013)

    Article  Google Scholar 

  84. Mori, F., Codeca, C., Kusayanagi, H., Monteleone, F., Buttari, F., Fiore, S., et al.: Effects of anodal transcranial direct current stimulation on chronic neuropathic pain in patients with multiple sclerosis. J. Pain. 11(5), 436–442 (2010)

    Article  Google Scholar 

  85. Di Lazzaro, V., Ranieri, F., Capone, F., Musumeci, G., Dileone, M.: Direct current motor cortex stimulation for amyotrophic lateral sclerosis: a proof of principle study. Brain Stimul: Basic, Transl., Clin. Res. Neuromodul. 6(6), 969–970 (2015)

    Article  Google Scholar 

  86. Munneke, M.A., Stegeman, D.F., Hengeveld, Y.A., Rongen, J.J., Schelhaas, H.J., Zwarts, M.J.: Transcranial direct current stimulation does not modulate motor cortex excitability in patients with amyotrophic lateral sclerosis. Muscle Nerve 44(1), 109–114 (2011)

    Article  Google Scholar 

  87. Quartarone, A., Lang, N., Rizzo, V., Bagnato, S., Morgante, F., Sant’angelo, A., et al.: Motor cortex abnormalities in amyotrophic lateral sclerosis with transcranial direct-current stimulation. Muscle Nerve. 35(5), 620–624 (2007)

    Article  Google Scholar 

  88. Munneke, M.A.M., Rongen, J.J., Overeem, S., Schelhaas, H.J., Zwarts, M.J., Stegeman, D.F.: Cumulative effect of 5 daily sessions of θ burst stimulation on corticospinal excitability in amyotrophic lateral sclerosis. Muscle Nerve 48(5), 733–738 (2013)

    Article  Google Scholar 

  89. Brunoni, A.R., Nitsche, M.A., Bolognini, N., Bikson, M., Wagner, T., Merabet, L., et al.: Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimul. 5(3), 175–195 (2012)

    Article  Google Scholar 

  90. Javadi, A.H., Cheng, P.: Transcranial direct current stimulation (tDCS) enhances reconsolidation of long-term memory. Brain Stimul. 6(4), 668–674 (2012)

    Article  Google Scholar 

  91. Radman, T., Ramos, R.L., Brumberg, J., Bikson, M.: Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation. Brain Stimul. 2(4), 215–228 (2009)

    Article  Google Scholar 

  92. Zhang, X., Liu, K., Sun, J., Zheng, Z.: Safety and feasibility of repetitive transcranial magnetic stimulation (rTMS) as a treatment for major depression during pregnancy. Arch Womens Ment Health. 13(4), 369–370 (2010)

    Article  Google Scholar 

  93. Brunoni, A.R., Ferrucci, R., Bortolomasi, M., Scelzo, E., Boggio, P.S., Fregni, F., et al.: Interactions between transcranial direct current stimulation (tDCS) and pharmacological interventions in the Major Depressive Episode: Findings from a naturalistic study. Eur Psychiatry. 28(6), 356–361 (2013)

    Article  Google Scholar 

  94. Brunoni, A.R., Valiengo, L., Baccaro, A., Zanão, T.A., de Oliveira, J.F., Goulart, A., et al.: The Sertraline vs. electrical current therapy for treating depression clinical study: Results from a factorial, randomized, controlled trial. JAMA Psychiatry. 32(1), 90–98 (2013)

    Google Scholar 

Download references

Acknowledgements

This study was funded by the grants from the Ministerio de Economía y Competitividad, Spanish Government (PSI2012-31660 and PSI2014-55785-C2-1-R) and counted with the participation of the Instituto de Neurorehabilitación InPaula.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Sánchez-Kuhn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Pérez-Fernández, C., Sánchez-Kuhn, A., Cánovas, R., Flores, P., Sánchez-Santed, F. (2016). The Effect of Transcranial Direct Current Stimulation (tDCS) Over Human Motor Function. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2016. Lecture Notes in Computer Science(), vol 9656. Springer, Cham. https://doi.org/10.1007/978-3-319-31744-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31744-1_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31743-4

  • Online ISBN: 978-3-319-31744-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics