Skip to main content

Automated Quality Control for Proton Magnetic Resonance Spectroscopy Data Using Convex Non-negative Matrix Factorization

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2016)

Abstract

Proton Magnetic Resonance Spectroscopy (1H MRS) has proven its diagnostic potential in a variety of conditions. However, MRS is not yet widely used in clinical routine because of the lack of experts on its diagnostic interpretation. Although data-based decision support systems exist to aid diagnosis, they often take for granted that the data is of good quality, which is not always the case in a real application context. Systems based on models built with bad quality data are likely to underperform in their decision support tasks. In this study, we propose a system to filter out such bad quality data. It is based on convex Non-Negative Matrix Factorization models, used as a dimensionality reduction procedure, and on the use of several classifiers to discriminate between good and bad quality data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Julia-Sape, M., Coronel, I., Majos, C., Candiota, A.P., Serrallonga, M., Cos, M., Aguilera, C., Acebes, J.J., Griffiths, J.R., Arus, C.: Prospective diagnostic performance evaluation of single-voxel 1H MRS for typing and grading of brain tumours. NMR Biomed. 25, 661–673 (2012)

    Article  Google Scholar 

  2. Stagg, C., Rothman, D.L.: Magnetic resonance spectroscopy: Tools for neuroscience research and emerging clinical applications. Academic Press, New York (2013)

    Google Scholar 

  3. Julia-Sape, M., Acosta, D., Mier, M., Arus, C., Watson, D., Consortium, I.: A multi-centre, web-accessible and quality control-checked database of in vivo MR spectra of brain tumour patients. Magma 19, 192–233 (2006)

    Article  Google Scholar 

  4. Pérez-Ruiz, A., Julià-Sapé, M., Mercadal, G., Olier, I., Majós, C., Arús, C.: The INTERPRET Decision-Support System version 3.0 for evaluation of Magnetic Resonance Spectroscopy data from human brain tumours and other abnormal brain masses. BMC Bioinform. 11, 581 (2010)

    Article  Google Scholar 

  5. Ortega-Martorell, S., Olier, I., Julia-Sape, M., Arus, C.: SpectraClassifier 1.0: A user friendly, automated MRS-based classifier-development system. BMC Bioinform. 11, 106 (2010)

    Article  Google Scholar 

  6. Oz, G., Alger, J.R., Barker, P.B., Bartha, R., Bizzi, A., Boesch, C., Bolan, P.J., Brindle, K.M., Cudalbu, C., Dincer, A., Dydak, U., Emir, U.E., Frahm, J., Gonzalez, R.G., Gruber, S., Gruetter, R., Gupta, R.K., Heerschap, A., Henning, A., Hetherington, H.P., Howe, F.A., Huppi, P.S., Hurd, R.E., Kantarci, K., Klomp, D.W., Kreis, R., Kruiskamp, M.J., Leach, M.O., Lin, A.P., Luijten, P.R., Marjanska, M., Maudsley, A.A., Meyerhoff, D.J., Mountford, C.E., Nelson, S.J., Pamir, M.N., Pan, J.W., Peet, A.C., Poptani, H., Posse, S., Pouwels, P.J., Ratai, E.M., Ross, B.D., Scheenen, T.W., Schuster, C., Smith, I.C., Soher, B.J., Tkac, I., Vigneron, D.B., Kauppinen, R.A.: Group, M.R.S.C.: Clinical proton MR spectroscopy in central nervous system disorders. Radiology 270, 658–679 (2014)

    Article  Google Scholar 

  7. Kreis, R.: Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed. 17, 361–381 (2004)

    Article  Google Scholar 

  8. van der Graaf, M., Julia-Sape, M., Howe, F.A., Ziegler, A., Majos, C., Moreno-Torres, A., Rijpkema, M., Acosta, D., Opstad, K.S., van der Meulen, Y.M., Arus, C., Heerschap, A.: MRS quality assessment in a multicentre study on MRS-based classification of brain tumours. NMR Biomed. 21, 148–158 (2008)

    Article  Google Scholar 

  9. García-Gómez, J.M., Luts, J., Julià-Sapé, M., Krooshof, P., Tortajada, S., Robledo, J.V., Melssen, W., Fuster-García, E., Olier, I., Postma, G.: Multiproject–multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy. Magn. Reson. Mater. Phys., Biol. Med. 22, 5–18 (2009)

    Article  Google Scholar 

  10. Julia-Sape, M., Lurgi, M., Mier, M., Estanyol, F., Rafael, X., Candiota, A.P., Barcelo, A., Garcia, A., Martinez-Bisbal, M.C., Ferrer-Luna, R., Moreno-Torres, A., Celda, B., Arus, C.: Strategies for annotation and curation of translational databases: The eTUMOUR project. Database: The journal of biological databases and curation 2012, bas035 (2012)

    Google Scholar 

  11. Tate, A.R., Underwood, J., Acosta, D.M., Julia-Sape, M., Majos, C., Moreno-Torres, A., Howe, F.A., van der Graaf, M., Lefournier, V., Murphy, M.M., Loosemore, A., Ladroue, C., Wesseling, P., Bosson, J.L., Cabanas, M.E., Simonetti, A.W., Gajewicz, W., Calvar, J., Capdevila, A., Wilkins, P.R., Bell, B.A., Remy, C., Heerschap, A., Watson, D., Griffiths, J.R., Arus, C.: Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR Biomed. 19, 411–434 (2006)

    Article  Google Scholar 

  12. Julià-Sapé, M., Griffiths, J.R., Tate, R.A., Howe, F.A., Acosta, D., Postma, G., Underwood, J., Majós, C., Arús, C.: Classification of brain tumours from MR spectra: The INTERPRET collaboration and its outcomes. NMR Biomed. 28, 1772–1787 (2015)

    Article  Google Scholar 

  13. Wright, A.J., Arus, C., Wijnen, J.P., Moreno-Torres, A., Griffiths, J.R., Celda, B., Howe, F.A.: Automated quality control protocol for MR spectra of brain tumors. Magn. Reson. Med.: Official J. Soc. Magn. Reson. Medi./Soc. Magn. Reson. Med. 59, 1274–1281 (2008)

    Article  Google Scholar 

  14. Van Gestel, T., Suykens, J.A., Lanckriet, G., Lambrechts, A., De Moor, B., Vandewalle, J.: Bayesian framework for least-squares support vector machine classifiers, gaussian processes, and kernel Fisher discriminant analysis. Neural Comput. 14, 1115–1147 (2002)

    Article  MATH  Google Scholar 

  15. Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks/ a Publ. IEEE Neural Netw. Coun. 10, 626–634 (1999)

    Article  Google Scholar 

  16. Ding, C., Li, T., Jordan, M.I.: Convex and semi-nonnegative matrix factorizations. IEEE Trans. Pattern Anal. Mach. Intell. 32, 45–55 (2010)

    Article  Google Scholar 

  17. Sauwen, N., Sima, D.M., Van Cauter, S., Veraart, J., Leemans, A., Maes, F., Himmelreich, U., Van Huffel, S.: Hierarchical non-negative matrix factorization to characterize brain tumor heterogeneity using multi-parametric MRI. NMR Biomed. 28, 1599–1624 (2015)

    Article  Google Scholar 

  18. Ortega-Martorell, S., Lisboa, P.J., Vellido, A., Julia-Sape, M., Arus, C.: Non-negative matrix factorisation methods for the spectral decomposition of MRS data from human brain tumours. BMC Bioinform. 13, 38 (2012)

    Article  Google Scholar 

  19. Arthur, D., Vassilvitskii, S.: k-means ++: The advantages of careful seeding. In: Proceedings of the Eighteenth annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035. Society for Industrial and Applied Mathematics (Year)

    Google Scholar 

  20. Tate, A.R., Griffiths, J.R., Martinez-Perez, I., Moreno, A., Barba, I., Cabanas, M.E., Watson, D., Alonso, J., Bartumeus, F., Isamat, F., Ferrer, I., Vila, F., Ferrer, E., Capdevila, A., Arus, C.: Towards a method for automated classification of 1H MRS spectra from brain tumours. NMR Biomed. 11, 177–191 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n° ITN-GA-2012-316679 – TRANSACT. This work was also partially funded by CIBER-BBN, which is an initiative of the VI National R&D&i Plan 2008–2011, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarida Julià-Sapé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mocioiu, V., Kyathanahally, S.P., Arús, C., Vellido, A., Julià-Sapé, M. (2016). Automated Quality Control for Proton Magnetic Resonance Spectroscopy Data Using Convex Non-negative Matrix Factorization. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2016. Lecture Notes in Computer Science(), vol 9656. Springer, Cham. https://doi.org/10.1007/978-3-319-31744-1_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31744-1_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31743-4

  • Online ISBN: 978-3-319-31744-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics