Skip to main content

A Mechanistic Study of lncRNA Fendrr Regulation of FoxF1 Lung Cancer Tumor Supressor

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9656))

Included in the following conference series:

Abstract

Long non-coding RNAs are known to play multiple roles in the complex machinery of the cell. However, their recent addition to genomic research has increased the complexity of gene expression analyses. In this work, we perform a computational study that aims to contribute to the current understanding of the mechanisms that underlie the experimentally suggested interaction between the lncRNA Fendrr and FoxF1 lung cancer tumor suppressor in carcinogenesis. Results suggest that there exists indeed a multi-level interaction between Fendrr and FoxF1 promoter region, both direct via RNA-DNA:DNA triplex domain formation or mediated by proteins that interact simultaneously with the promoter region of FoxF1 and Fendrr transcripts. Moreover, the applied computational methodology can serve as a pipeline to process any candidate lncRNA-gene pair of interest and obtain putative sources of lncRNA-gene interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geisler, S., Coller, J.: RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat. Rev. Mol. Cell Biol. 14(11), 699–712 (2013)

    Article  Google Scholar 

  2. Wapinski, O., Chang, H.Y.: Long noncoding RNAs and human disease. Trends Cell Biol. 21(6), 354–361 (2011)

    Article  Google Scholar 

  3. Szafranski, P., Dharmadhikari, A.V., Brosens, E., Gurha, P., Kołodziejska, K.E., Zhishuo, O., Dittwald, P., Majewski, T., Mohan, K.N., Chen, B., et al.: Small noncoding differentially methylated copy-number variants, including lncRNA genes, cause a lethal lung developmental disorder. Genome Res. 23(1), 23–33 (2013)

    Article  Google Scholar 

  4. Cabili, M.N., Dunagin, M.C., McClanahan, P.D., Biaesch, A., Padovan-Merhar, O., Regev, A., Rinn, J.L., Raj, A.: Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol. 16(1), 20 (2015)

    Article  Google Scholar 

  5. Grote, P., Herrmann, B.G.: The long non-coding RNA Fendrr links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biol. 10(10), 1579–1585 (2013)

    Article  Google Scholar 

  6. Konig, J., Zarnack, K., Rot, G., Curk, T., Kayikci, M., Zupan, B., Turner, D.J., Luscombe, N.M., Ule, J.: iCLIP-transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution. J. Vis. Exp.: JoVE 50, e2638 (2011)

    Google Scholar 

  7. Kudla, G., Granneman, S., Hahn, D., Beggs, J.D., Tollervey, D.: Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc. Nat. Acad. Sci. 108(24), 10010–10015 (2011)

    Article  Google Scholar 

  8. Darnell, R.: CLIP (Cross-Linking and Immunoprecipitation) identification of RNAs bound by a specific protein. Cold Spring Harb. Protoc. 2012(11), pdb-prot072132 (2012)

    Article  Google Scholar 

  9. Danan, C., Manickavel, S., Hafner, M.: A method for Transcriptome-wide identification of RNA binding protein interaction sites. In: Dassi, E. (ed.) Post-Transcriptional Gene Regulation. MMB, vol. 1358, pp. 153–173. Springer, New York (2016)

    Chapter  Google Scholar 

  10. Simon, M.D., Wang, C.I., Kharchenko, P.V., West, J.A., Chapman, B.A., Alekseyenko, A.A., Borowsky, M.L., Kuroda, M.I., Kingston, R.E.: The genomic binding sites of a noncoding RNA. Proc. Nat. Acad. Sci. 108(51), 20497–20502 (2011)

    Article  Google Scholar 

  11. Hanzelmann, S., Kuo, C.C., Kalwa, M., Wagner, W., Costa, I.G.: Triplex domain finder: detection of triple helix binding domains in long non-coding RNAs (2015). bioRxiv 020297

    Google Scholar 

  12. Lee, N., Steitz, J.A.: Noncoding RNA-guided recruitment of transcription factors: a prevalent but undocumented mechanism? BioEssays 37(9), 936–941 (2015)

    Article  Google Scholar 

  13. Wang, K.C., Chang, H.Y.: Molecular mechanisms of long noncoding RNAs. Mol. Cell 43(6), 904–914 (2011)

    Article  Google Scholar 

  14. Vaquerizas, J.M., Kummerfeld, S.K., Teichmann, S.A., Luscombe, N.M.: A census of human transcription factors: function, expression and evolution. Nat. Rev. Genet. 10(4), 252–263 (2009)

    Article  Google Scholar 

  15. Buske, F.A., Mattick, J.S., Bailey, T.L.: Potential in vivo roles of nucleic acid triple-helices. RNA Biol. 8(3), 427–439 (2011)

    Article  Google Scholar 

  16. Buske, F.A., Bauer, D.C., Mattick, J.S., Bailey, T.L.: Triplexator: detecting nucleic acid triple helices in genomic and transcriptomic data. Genome Res. 22(7), 1372–1381 (2012)

    Article  Google Scholar 

  17. Johnson, R., Guigó, R.: The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA 20(7), 959–976 (2014)

    Article  Google Scholar 

  18. Grant, C.E., Bailey, T.L., Noble, W.S.: FIMO: scanning for occurrences of a given motif. Bioinformatics 27(7), 1017–1018 (2011)

    Article  Google Scholar 

  19. Mathelier, A., Fornes, O., Arenillas, D.J., Chen, C.Y., Denay, G., Lee, J., Shi, W., Shyr, C., Tan, G., Worsley-Hunt, R., Zhang, A.W., Parcy, F., Lenhard, B., Sandelin, A., Wasserman, W.W.: JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 44(Database issue), D110 (2015)

    Google Scholar 

  20. Kulakovskiy, I.V., Medvedeva, Y.A., Schaefer, U., Kasianov, A.S., Vorontsov, I.E., Bajic, V.B., Makeev, V.J.: HOCOMOCO: a comprehensive collection of human transcription factor binding sites models. Nucleic Acids Res. 41(D1), D195–D202 (2013)

    Article  Google Scholar 

  21. Lorenz, R., Bernhart, S.H., Zu Siederdissen, C.H., Tafer, H., Flamm, C., Stadler, P.F., Hofacker, I.L., et al.: Viennarna package 2.0. Algorithms Mol. Biol. 6(1), 26 (2011)

    Article  Google Scholar 

  22. Cook, K.B., Kazan, H., Zuberi, K., Morris, Q., Hughes, T.R.: RBPDB: a database of RNA-binding specificities. Nucleic Acids Res. 39(suppl 1), D301–D308 (2011)

    Article  Google Scholar 

  23. Bauer, M., Trupke, J., Ringrose, L.: The quest for mammalian Polycomb response elements: are we there yet? Chromosoma, 1–26 (2015). doi:10.1007/s00412-015-0539-4

    Google Scholar 

  24. Rosenbloom, K.R., Armstrong, J., Barber, G.P., Casper, J., Clawson, H., Diekhans, M., Dreszer, T.R., Fujita, P.A., Guruvadoo, L., Haeussler, M., et al.: The UCSC genome browser database: 2015 update. Nucleic Acids Res. 43(D1), D670–D681 (2015)

    Article  Google Scholar 

  25. Steinbiss, S., Gremme, G., Schärfer, C., Mader, M., Kurtz, S.: Annotationsketch: a genome annotation drawing library. Bioinformatics 25(4), 533–534 (2009)

    Article  Google Scholar 

  26. Lunde, B.M., Moore, C., Varani, G.: RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8(6), 479–490 (2007)

    Article  Google Scholar 

  27. Glisovic, T., Bachorik, J.L., Yong, J., Dreyfuss, G.: RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 582(14), 1977–1986 (2008)

    Article  Google Scholar 

  28. Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Diekhans, M., Kokocinski, F., Aken, B.L., Barrell, D., Zadissa, A., Searle, S., et al.: Gencode: the reference human genome annotation for the encode project. Genome Res. 22(9), 1760–1774 (2012)

    Article  Google Scholar 

  29. Ray, D., Kazan, H., Cook, K.B., Weirauch, M.T., Najafabadi, H.S., Li, X., Gueroussov, S., Albu, M., Zheng, H., Yang, A., et al.: A compendium of RNA-binding motifs for decoding gene regulation. Nature 499(7457), 172–177 (2013)

    Article  Google Scholar 

  30. Tsai, M.C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J.K., Lan, F., Shi, Y., Segal, E., Chang, H.Y.: Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992), 689–693 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded as part of projects PI-0710-2013 of J. A., Sevilla and TIN2013-41990-R of DGICT, Madrid and from FEDER. C. Navarro’s work is funded as part of a FPU grant by the Spanish Ministry of Education, Culture and Sports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Navarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Navarro, C., Cano, C., Cuadros, M., Herrera-Merchan, A., Molina, M., Blanco, A. (2016). A Mechanistic Study of lncRNA Fendrr Regulation of FoxF1 Lung Cancer Tumor Supressor. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2016. Lecture Notes in Computer Science(), vol 9656. Springer, Cham. https://doi.org/10.1007/978-3-319-31744-1_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31744-1_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31743-4

  • Online ISBN: 978-3-319-31744-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics