Skip to main content

Robust Multi-view Manifold Ranking for Image Retrieval

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9652))

Included in the following conference series:

Abstract

Graph-based similarity ranking plays a key role in improving image retrieval performance. Its current trend is to fuse the ranking results from multiple feature sets, including textual feature, visual feature and query log feature, to elevate the retrieval effectiveness. The primary challenge is how to effectively exploit the complementary properties of different features. Another tough issue is the highly noisy features contributed by users, such as textual tags and query logs, which makes the exploration of such complementary properties difficult. This paper proposes a Multi-view Manifold Ranking (M2R) framework, in which multiple graphs built on different features are integrated to simultaneously encode the similarity ranking. To deal with the high noise issue inherent in the user-contributed features, a data cleaning solution based on visual-neighbor voting is embedded into M2R, thus called Robust M2R (RM2R). Experimental results show that the proposed method significantly outperforms the existing approaches, especially when the user-contributed features are highly noisy.

J. Wu—This work was performed when the first author was an academic visitor at University of Rochester.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.datatang.com/data/44353. The dataset was firstly used in [15].

References

  1. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: COLT, pp. 92–100 (1998)

    Google Scholar 

  2. Deng, C., Ji, R., Tao, D., Gao, X., Li, X.: Weakly supervised multi-graph learning for robust image reranking. IEEE Trans. Multimedia 16(3), 785–795 (2014)

    Article  Google Scholar 

  3. He, J., Li, M., Zhang, H., Tong, H., Zhang, C.S.: Manifold-ranking based image retrieval. In: ACM Multimedia, pp. 9–16 (2004)

    Google Scholar 

  4. Hoi, S., Liu, W., Chang, S.F.: Semi-supervised distance metric learning for collaborative image retrieval. In: CVPR, pp. 1–7 (2008)

    Google Scholar 

  5. Jain, V., Varma, M.: Learning to re-rank: query-dependent image re-ranking using click data. In: Proceedings of the 20th International Conference on World Wide Web, WWW 2011, pp. 277–286 (2011)

    Google Scholar 

  6. Li, X., Snoek, G.C., Worring, M.: Learning social tag relevance by neighbor voting. IEEE Trans. Multimedia 11(7), 1310–1322 (2009)

    Article  Google Scholar 

  7. Pan, Y., Yao, T., Mei, T., Li, H., Ngo, C.W., Rui, Y.: Click-through-based cross-view learning for image search. In: SIGIR, pp. 717–726 (2014)

    Google Scholar 

  8. Smith, G., Brien, C., Ashman, H.: Evaluating implicit judgments from image search clickthrough data. J. Am. Soc. Inf. Sci. Technol. 63(12), 2451–2462 (2012)

    Article  Google Scholar 

  9. Su, J., Huang, W., Yu, P., Tseng, V.: Efficient relevance feedback for content-based image retrieval by mining user navigation patterns. IEEE Trans. Knowl. Data Eng. 23(3), 360–372 (2011)

    Article  Google Scholar 

  10. Wang, B., Pan, F., Hu, K.M., Paul, J.C.: Manifold-ranking based retrieval using k-regular nearest neighbor graph. Pattern Recogn. 45(4), 1569–1577 (2012)

    Article  Google Scholar 

  11. Wang, M., Li, H., Tao, D., Lu, K., Wu, X.: Multimodal graph-based reranking for web image search. IEEE Trans. Image Process. 21(11), 4649–4661 (2012)

    Article  MathSciNet  Google Scholar 

  12. Wang, T., Dai, G., Ni, B., Xu, D., Siewe, F.: A distance measure between labeled combinatorial maps. Comput. Vis. Image Underst. 116(12), 1168–1177 (2012)

    Article  Google Scholar 

  13. Wang, W., Zhou, Z.-H.: Analyzing co-training style algorithms. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 454–465. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Wu, J., Lin, Z., Lu, M.Y.: Asymmetric semi-supervised boosting for SVM active learning in CBIR. In: ACM CIVR, pp. 182–188 (2010)

    Google Scholar 

  15. Wu, J., Shen, H., Li, Y.D., Xiao, Z.B., Lu, M.Y., Wang, C.L.: Learning a hybrid similarity measure for image retrieval. Pattern Recogn. 46(11), 2927–2939 (2013)

    Article  MATH  Google Scholar 

  16. Wu, J., Li, Y., Feng, S., Shen, H.: A self-immunizing manifold ranking for image retrieval. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013, Part II. LNCS, vol. 7819, pp. 426–436. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Wu, J., Lu, M.Y., Wang, C.L.: Collaborative learning between visual content and hidden semantic for image retrieval. In: ICDM, pp. 1133–1138 (2010)

    Google Scholar 

  18. Wu, J., Xiao, Z.B., Wang, H.S., Shen, H.: Learning with both unlabeled data and query logs for image search. Comput. Electr. Eng. 40(3), 964–973 (2014)

    Article  Google Scholar 

  19. Xu, B., Bu, J., Chen, C., Wang, C., Cai, D., He, X.: EMR: a efficient manifold ranking model for content-based image retrieval. IEEE Trans. Knowl. Data Eng. 27(1), 102–114 (2014)

    Google Scholar 

  20. Yang, X., Zhang, Y., Yao, T., Ngo, C.W., Mei, T.: Click-boosting multi-modality graph-based reranking for image search. Multimedia Syst. 21(2), 217–227 (2015)

    Article  Google Scholar 

  21. Yin, P.Y., Bhanu, B., Chang, K.C., Dong, A.: Integrating relevance feedback techniques for image retrieval using reinforcement learning. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1536–1551 (2005)

    Article  Google Scholar 

  22. Yu, J., Tao, D., Wang, M., Rui, Y.: Learning to rank using user clicks and visual features for image retrieval. IEEE Trans. Cybern. 45(4), 767–779 (2015)

    Article  Google Scholar 

  23. Yu, J., Rui, Y., Chen, B.: Exploiting click constraints and multi-view features for image re-ranking. IEEE Trans. Multimedia 16(1), 159–168 (2014)

    Article  Google Scholar 

  24. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: NIPS, pp. 1601–1608 (2004)

    Google Scholar 

  25. Zhang, L., Rui, Y.: Image search: from thousands to billions in 20 years. ACM Trans. Multimedia Comput. Commun. Appl. 9(1s), 36:1–36:20 (2013)

    Article  Google Scholar 

  26. Zhang, Y., Yang, X., Mei, T.: Image search reranking with query-dependent click-based relevance feedback. IEEE Trans. Image Process. 23(10), 4448–4459 (2014)

    Article  MathSciNet  Google Scholar 

  27. Zhou, D., Weston, J., Gretton, A., Bousquet, O., Scholkopf, B.: Ranking on data manifolds. In: NIPS, pp. 169–176 (2003)

    Google Scholar 

  28. Zhou, X.S., Huang, T.S.: Relevance feedback in image retrieval: a comprehensive review. Multimedia Syst. 8(6), 536–544 (2003)

    Article  Google Scholar 

  29. Zhou, Z.H., Chen, K.J., Dai, H.B.: Enhancing relevance feedback in image retrieval using unlabeled data. ACM Trans. Inf. Syst. 24(2), 219–244 (2006)

    Article  Google Scholar 

  30. Zhou, Z.H., Zhan, D.C., Yang, Q.: Semi-supervised learning with very few labeled training examples. In: AAAI, pp. 675–680 (2007)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their constructive suggestions. This work was supported in part by the ‘Natural Science Foundation of China’ (61301185, 61370070 and 61300071), the ‘Fundamental Research Funds for the Central Universities’ (2015JBM029), and the ‘Science Foundation of Beijing Jiaotong University’ (2015RC008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wu, J., Yuan, J., Luo, J. (2016). Robust Multi-view Manifold Ranking for Image Retrieval. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J., Wang, R. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2016. Lecture Notes in Computer Science(), vol 9652. Springer, Cham. https://doi.org/10.1007/978-3-319-31750-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31750-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31749-6

  • Online ISBN: 978-3-319-31750-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics