Abstract
Traditional cross-view information retrieval mainly rests on correlating two sets of features in different views. However, features in different views usually have different physical interpretations. It may be inappropriate to map multiple views of data onto a shared feature space and directly compare them. In this paper, we propose a simple yet effective Cross-View Feature Hashing (CVFH) algorithm via a “partition and match” approach. The feature space for each view is bi-partitioned multiple times using B hash functions and the resulting binary codes for all the views can thus be represented in a compatible B-bit Hamming space. To ensure that hashed feature space is effective for supporting generic machine learning and information retrieval functionalities, the hash functions are learned to satisfy two criteria: (1) the neighbors in the original feature spaces should be also close in the Hamming space; and (2) the binary codes for multiple views of the same sample should be similar in the shared Hamming space. We apply CVFH to cross-view image retrieval. The experimental results show that CVFH can outperform the Canonical Component Analysis (CCA) based cross-view method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The signs of eigenvectors of a graph Laplacian are used as bi-partition labels in spectral clustering.
- 2.
- 3.
References
Belkin, M., Niyogi, P.: Laplacian eignemaps and spectral techniques for embedding and clustering. In: NIPS, pp. 585–591 (2002)
Blaschko, M.B., Lampert, C.H.: Correlational spectral clustering. In: CVPR, pp. 1–8 (2008)
Broder, A., Charikar, M., Frieze, A., Mitzenmacher, M.: Min-wise independent permutations. In: STOC, pp. 327–336 (1998)
Chaudhuri, K., Kakade, S.M., Livescu, K., Sridharan, K.: Multi-view clustering via canonical correlation analysis. In: ICML, pp. 129–136 (2009)
Chi, L., Li, B., Zhu, X.: Context-preserving hashing for fast text classification. In: SDM, pp. 100–108 (2013)
Fu, B., Xu, G., Cao, L., Wang, Z., Wu, Z.: Coupling multiple views of relations for recommendation. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D., Motoda, H. (eds.) PAKDD 2015. LNCS, vol. 9078, pp. 732–743. Springer, Heidelberg (2015)
Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: VLDB, pp. 518–529 (1999)
Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 16(12), 2639–2664 (2004)
He, X., Niyogi, P.: Locality preserving projections. In: NIPS, pp. 585–591 (2004)
Kulis, B., Darrell, T.: Learning to hash with binary reconstructive embeddings. In: NIPS, pp. 1042–1050 (2010)
Li, B., Zhu, X., Chi, L., Zhang, C.: Nested subtree hash kernels for large-scale graph classification over streams. In: ICDM, pp. 399–408 (2012)
Littman, M., Dumais, S.T., Landauer, T.K.: Automatic cross-language information retrieval using latent semantic indexing. In: Grefenstette, G. (ed.) Cross-Language Information Retrieval, Chapter 5, pp. 51–62. Springer, New York (1998)
Liu, W., Wang, J., Kumar, S., Chang, S.F.: Hashing with graphs. In: ICML, pp. 1–8 (2011)
Long, B., Yu, P.S., Zhang, Z.: A general model for multiple view unsupervised learning. In: SDM, pp. 822–833 (2008)
Marukatat, S., Sinthupinyo, W.: Improved spectral hashing. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part I. LNCS, vol. 6634, pp. 160–170. Springer, Heidelberg (2011)
Ou, M., Cui, P., Wang, F., Wang, J., Zhu, W., Yang, S.: Comparing apples to oranges: a scalable solution with heterogeneous hashing. In: KDD, pp. 230–238. ACM (2013)
Quadrianto, N., Lampert, C.H.: Learning multi-view neighborhood preserving projections. In: ICML, pp. 425–432 (2011)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)
Tokui, S., Sato, I., Nakagawa, H.: Locally optimized hashing for nearest neighbor search. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D., Motoda, H. (eds.) PAKDD 2015. LNCS, vol. 9078, pp. 498–509. Springer, Heidelberg (2015)
Vinokourov, A., Shawe-Taylor, J., Cristianini, N.: Inferring a semantic representation of text via cross-language correlation analysis. In: NIPS, pp. 1473–1480 (2003)
Wei, Y., Song, Y., Zhen, Y., Liu, B., Yang, Q.: Scalable heterogeneous translated hashing. In: KDD, pp. 791–800. ACM (2014)
Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NIPS, pp. 1753–1760 (2009)
Xia, T., Tao, D., Mei, T., Zhang, Y.: Multiview spectral embedding. IEEE Trans. Syst. Man Cybern.-Part B Cybern. 40(6), 1438–1446 (2010)
Yao, T., Mei, T., Ngo, C.W.: Learning query and image similarities with ranking canonical correlation analysis. In: ICCV, pp. 28–36 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Wu, W., Li, B., Chen, L., Zhang, C. (2016). Cross-View Feature Hashing for Image Retrieval. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J., Wang, R. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2016. Lecture Notes in Computer Science(), vol 9651. Springer, Cham. https://doi.org/10.1007/978-3-319-31753-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-31753-3_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31752-6
Online ISBN: 978-3-319-31753-3
eBook Packages: Computer ScienceComputer Science (R0)