Skip to main content

Bayesian Group Feature Selection for Support Vector Learning Machines

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9651))

Included in the following conference series:

  • 2605 Accesses

Abstract

Group Feature Selection (GFS) has proven to be useful in improving the interpretability and prediction performance of learned model parameters in many machine learning and data mining applications. Existing GFS models were mainly based on square loss and logistic loss for regression and classification, leaving the \(\epsilon \)-insensitive loss and the hinge loss popularized by Support Vector Learning (SVL) machines still unexplored. In this paper, we present a Bayesian GFS framework for SVL machines based on the pseudo likelihood and data augmentation idea. With Bayesian inference, our method can circumvent the cross-validation for regularization parameters. Specifically, we apply the mean field variational method in an augmented space to derive the posterior distribution of model parameters and hyper-parameters for Bayesian estimation. Both regression and classification experiments conducted on synthetic and real-world data sets demonstrate that our proposed approach outperforms a number of competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: ESANN (2013)

    Google Scholar 

  2. Babacan, S.D., Nakajima, S., Do, M.N.: Bayesian group-sparse modeling and variational inference. IEEE Trans. Sig. Process 62(11), 2906–2921 (2014)

    Article  MathSciNet  Google Scholar 

  3. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based vector machines. J. Mach. Learn. Res. 2, 265–292 (2002)

    MATH  Google Scholar 

  4. Drucker, H., Burges, C.J., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines. In: NIPS, pp. 155–161 (1997)

    Google Scholar 

  5. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

    MATH  Google Scholar 

  6. Hall, D.L., McMullen, S.A.: Mathematical Techniques in Multisensor Data Fusion. Artech House, Norwood (2004)

    MATH  Google Scholar 

  7. Hernández-Lobato, D., Hernández-Lobato, J.M., Dupont, P.: Generalized spike-and-slab priors for bayesian group feature selection using expectation propagation. J. Mach. Learn. Res. 14(1), 1891–1945 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Hull, J.: A database for handwritten text recognition research. IEEE Trans. PAMI 16(5), 550–554 (1994)

    Article  Google Scholar 

  9. Jacob, L., Obozinski, G., Vert, J.P.: Group lasso with overlap and graph lasso. In: ICML, pp. 433–440 (2009)

    Google Scholar 

  10. Liu, J., Ji, S., Ye, J.: Slep: Sparse Learning with Efficient Projections. Arizona State University, Tempe (2009)

    Google Scholar 

  11. Meier, L., Van De Geer, S., Bühlmann, P.: The group lasso for logistic regression. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 70(1), 53–71 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Polson, N.G., Scott, S.L.: Data augmentation for support vector machines. Bayesian Anal. 6(1), 1–23 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Raman, S., Fuchs, T.J., Wild, P.J., Dahl, E., Roth, V.: The bayesian group-lasso for analyzing contingency tables. In: ICML, pp. 881–888 (2009)

    Google Scholar 

  14. Roth, V., Fischer, B.: The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms. In: ICML, pp. 848–855 (2008)

    Google Scholar 

  15. Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: A sparse-group lasso. J. Comput. Graph. Stat. 22(2), 231–245 (2013)

    Article  MathSciNet  Google Scholar 

  16. Subrahmanya, N., Shin, Y.C.: Sparse multiple kernel learning for signal processing applications. IEEE Trans. PAMI 32(5), 788–798 (2010)

    Article  Google Scholar 

  17. Subrahmanya, N., Shin, Y.C.: A variational bayesian framework for group feature selection. Int. J. Mach. Learn. Cybern. 4(6), 609–619 (2013)

    Article  Google Scholar 

  18. Tan, M., Wang, L., Tsang, I.W.: Learning sparse svm for feature selection on very high dimensional datasets. In: ICML, pp. 1047–1054 (2010)

    Google Scholar 

  19. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Tipping, M.E.: Sparse bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Wang, J., Zhao, Z.Q., Hu, X., Cheung, Y.M., Wang, M., Wu, X.: Online group feature selection. In: IJCAI, pp. 1757–1763 (2013)

    Google Scholar 

  22. Yang, H., Xu, Z., King, I., Lyu, M.R.: Online learning for group lasso. In: ICML, pp. 1191–1198 (2010)

    Google Scholar 

  23. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Series B 68(1), 49–67 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhu, J., Rosset, S., Hastie, T., Tibshirani, R.: 1-norm support vector machines. In: NIPS, pp. 49–56 (2004)

    Google Scholar 

  25. Zhu, J., Chen, N., Perkins, H., Zhang, B.: Gibbs max-margin topic models with data augmentation. J. Mach. Learn. Res. 15, 1073–1110 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 9154610306, 61573335, 61473273, 61473274, 11390371, 11233004), National Key Basic Research Program of China (Grant No. 2014CB845700), National High-tech R&D Program of China (863 Program) (No. 2014AA015105), Guangdong provincial science and technology plan projects (No. 2015 B010109005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changying Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Du, C., Du, C., Zhe, S., Luo, A., He, Q., Long, G. (2016). Bayesian Group Feature Selection for Support Vector Learning Machines. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J., Wang, R. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2016. Lecture Notes in Computer Science(), vol 9651. Springer, Cham. https://doi.org/10.1007/978-3-319-31753-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31753-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31752-6

  • Online ISBN: 978-3-319-31753-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics