Skip to main content

Predicting Unknown Interactions Between Known Drugs and Targets via Matrix Completion

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9651))

Included in the following conference series:

Abstract

Drug-target interactions map patterns, associations and relationships between drugs and target proteins. Identifying interactions between drug and target is critical in drug discovery, but biochemically validating these interactions are both laborious and expensive. In this paper, we propose a novel interaction profiles based method to predict potential drug-target interactions by using matrix completion. Our method first arranges the drug-target interactions in a matrix, whose entries include interaction pairs, non-interaction pairs and undetermined pairs, and finds its approximation matrix which contains the predicted values at undetermined positions. Then our method learns an approximation matrix by minimizing the distance between the drug-target interaction matrix and its approximation subject that the values in the observed positions equal to the known interactions at the corresponding positions. As a consequence, our method can directly predict new potential interactions according to the high values at the undetermined positions. We evaluated our method by comparing against five counterpart methods on “gold standard” datasets. Our method outperforms the counterparts, and achieves high AUC and \(F_1\)-score on enzyme, ion channel, GPCR, nuclear receptor and integrated datasets, respectively. We showed the intelligibility of our method by validating some predicted interactions in both DrugBank and KEGG databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hopkins, A.L.: Drug discovery: predicting promiscuity. Nature 462(7270), 167–168 (2009)

    Article  Google Scholar 

  2. Cai, J.-F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ashburn, T.T., Thor, K.B.: Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 3(8), 673–683 (2004)

    Article  Google Scholar 

  4. Dudley, J.T., Deshpande, T., Butte, A.J.: Exploiting drug-disease relationships for computational drug repositioning. Briefings Bioinform. 12(4), 303–311 (2011)

    Article  Google Scholar 

  5. Swamidass, S.J.: Mining small-molecule screens to repurpose drugs. Briefings Bioinform. 12(4), 327–335 (2011)

    Article  Google Scholar 

  6. Moriaud, F., Richard, S.B., Adcock, S.A., Chanas-Martin, L., Surgand, J.-S., Jelloul, M.B., Delfaud, F.: Identify drug repurposing candidates by mining the protein data bank. Briefings Bioinform. 12(4), 336–340 (2011)

    Article  Google Scholar 

  7. Whitebread, S., Hamon, J., Bojanic, D., Urban, L.: Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development. Drug Discov. Today 10(21), 1421–1433 (2005)

    Article  Google Scholar 

  8. Haggarty, S.J., Koeller, K.M., Wong, J.C., Butcher, R.A., Schreiber, S.L.: Multidimensional chemical genetic analysis of diversity-oriented synthesis-derived deacetylase inhibitors using cell-based assays. Chem. Biol. 10(5), 383–396 (2003)

    Article  Google Scholar 

  9. Kuruvilla, F.G., Shamji, A.F., Sternson, S.M., Hergenrother, P.J., Schreiber, S.L.: Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. Nature 416(6881), 653–657 (2002)

    Article  Google Scholar 

  10. Manly, C.J., Louise-May, S., Hammer, J.D.: The impact of informatics and computational chemistry on synthesis and screening. Drug Discov. Today 6(21), 1101–1110 (2001)

    Article  Google Scholar 

  11. Cheng, A.C., Coleman, R.G., Smyth, K.T., Cao, Q., Soulard, P., Caffrey, D.R., Salzberg, A.C., Huang, E.S.: Structure-based maximal affinity model predicts small-molecule druggability. Nat. Biotechnol. 25(1), 71–75 (2007)

    Article  Google Scholar 

  12. Rarey, M., Kramer, B., Lengauer, T., Klebe, G.: A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261(3), 470–489 (1996)

    Article  Google Scholar 

  13. Shoichet, B.K., Kuntz, I.D., Bodian, D.L.: Molecular docking using shape descriptors. J. Comput. Chem. 13(3), 380–397 (1992)

    Article  Google Scholar 

  14. Halperin, I., Ma, B., Wolfson, H., Nussinov, R.: Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins Struct. Funct. Bioinform. 47(4), 409–443 (2002)

    Article  Google Scholar 

  15. Shoichet, B.K., McGovern, S.L., Wei, B., Irwin, J.J.: Lead discovery using molecular docking. Curr. Opin. Chem. Biol. 6(4), 439–446 (2002)

    Article  Google Scholar 

  16. Kolb, P., Ferreira, R.S., Irwin, J.J., Shoichet, B.K.: Docking and chemoinformatic screens for new ligands and targets. Curr. Opin. Biotechnol. 20(4), 429–436 (2009)

    Article  Google Scholar 

  17. Zhu, S., Okuno, Y., Tsujimoto, G., Mamitsuka, H.: A probabilistic model for mining implicit chemical compound–generelations from literature. Bioinformatics 21(Suppl. 2), ii245–ii251 (2005)

    Google Scholar 

  18. Butina, D., Segall, M.D., Frankcombe, K.: Predicting adme properties in silico: methods and models. Drug Discov. Today 7(11), S83–S88 (2002)

    Article  Google Scholar 

  19. Byvatov, E., Fechner, U., Sadowski, J., Schneider, G.: Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J. Chem. Inf. Comput. Sci. 43(6), 1882–1889 (2003)

    Article  Google Scholar 

  20. Keiser, M.J., Roth, B.L., Armbruster, B.N., Ernsberger, P., Irwin, J.J., Shoichet, B.K.: Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 25(2), 197–206 (2007)

    Article  Google Scholar 

  21. Klabunde, T., Hessler, G.: Drug design strategies for targeting g-protein-coupled receptors. Chembiochem 3(10), 928–944 (2002)

    Article  Google Scholar 

  22. Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., Kanehisa, M.: Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24(13), i232–i240 (2008)

    Article  Google Scholar 

  23. Bleakley, K., Yamanishi, Y.: Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics 25(18), 2397–2403 (2009)

    Article  Google Scholar 

  24. Gönen, M.: Predicting drug-target interactions from chemical and genomic kernels using bayesian matrix factorization. Bioinformatics 28(18), 2304–2310 (2012)

    Article  Google Scholar 

  25. van Laarhoven, T., Nabuurs, S.B., Marchiori, E.: Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 27(21), 3036–3043 (2011)

    Article  Google Scholar 

  26. Xia, Z., Wu, L.-Y., Zhou, X., Wong, S.T.: Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol. 4(Suppl. 2), S6 (2010)

    Article  Google Scholar 

  27. Jacob, L., Vert, J.-P.: Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics 24(19), 2149–2156 (2008)

    Article  Google Scholar 

  28. Klabunde, T.: Chemogenomic approaches to drug discovery: similar receptors bind similar ligands. Br. J. Pharmacol. 152(1), 5–7 (2007)

    Article  Google Scholar 

  29. Schuffenhauer, A., Floersheim, P., Acklin, P., Jacoby, E.: Similarity metrics for ligands reflecting the similarity of the target proteins. J. Chem. Inf. Comput. Sci. 43(2), 391–405 (2003)

    Article  Google Scholar 

  30. Nagamine, N., Sakakibara, Y.: Statistical prediction of protein-chemical interactions based on chemical structure and mass spectrometry data. Bioinformatics 23(15), 2004–2012 (2007)

    Article  Google Scholar 

  31. Nagamine, N., Shirakawa, T., Minato, Y., Torii, K., Kobayashi, H., Imoto, M., Sakakibara, Y.: Integrating statistical predictions and experimental verifications for enhancing protein-chemical interaction predictions in virtual screening. PLoS Comput. Biol. 5(6), e1 000 397–e1 000 397 (2009)

    Article  Google Scholar 

  32. Yabuuchi, H., Niijima, S., Takematsu, H., Ida, T., Hirokawa, T., Hara, T., Ogawa, T., Minowa, Y., Tsujimoto, G., Okuno, Y.: Analysis of multiple compound-protein interactions reveals novel bioactive molecules. Mol. Syst. Biol. 7(1), 472 (2011)

    Article  Google Scholar 

  33. Wang, Y., Zeng, J.: Predicting drug-target interactions using restricted boltzmann machines. Bioinformatics 29(13), i126–i134 (2013)

    Article  Google Scholar 

  34. Kuhn, M., Szklarczyk, D., Franceschini, A., von Mering, C., Jensen, L.J., Bork, P.: Stitch 3: zooming in on protein-chemical interactions. Nucleic Acids Res. 40(D1), D876–D880 (2012)

    Article  Google Scholar 

  35. Ballesteros, J., Palczewski, K.: G protein-coupled receptor drug discovery: implications from the crystal structure of rhodopsin. Curr. Opin. Drug Discov. Dev. 4(5), 561 (2001)

    Google Scholar 

  36. Yamanishi, Y., Kotera, M., Kanehisa, M., Goto, S.: Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26(12), i246–i254 (2010)

    Article  Google Scholar 

  37. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000)

    Article  Google Scholar 

  38. Yu, G., Li, F., Qin, Y., Bo, X., Wu, Y., Wang, S.: Gosemsim: an r package for measuring semantic similarity among go terms and gene products. Bioinformatics 26(7), 976–978 (2010)

    Article  Google Scholar 

  39. Zheng, X., Ding, H., Mamitsuka, H., Zhu, S.: Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1025–1033. ACM (2013)

    Google Scholar 

  40. Cheng, F., Liu, C., Jiang, J., Lu, W., Li, W., Liu, G., Zhou, W., Huang, J., Tang, Y.: Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput. Biol. 8(5), e1002503 (2012)

    Article  Google Scholar 

  41. Cobanoglu, M.C., Liu, C., Hu, F., Oltvai, Z.N., Bahar, I.: Predicting drug-target interactions using probabilistic matrix factorization. J. Chem. Inf. Model. 53(12), 3399–3409 (2013)

    Article  Google Scholar 

  42. Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M., Kawashima, S., Katayama, T., Araki, M., Hirakawa, M.: From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34(Suppl. 1), D354–D357 (2006)

    Article  Google Scholar 

  43. Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C., Huhn, G., Schomburg, D.: Brenda, the enzyme database: updates and major new developments. Nucleic Acids Res. 32(Suppl. 1), D431–D433 (2004)

    Article  Google Scholar 

  44. Günther, S., Kuhn, M., Dunkel, M., Campillos, M., Senger, C., Petsalaki, E., Ahmed, J., Urdiales, E.G., Gewiess, A., Jensen, L.J., et al.: Supertarget and matador: resources for exploring drug-target relationships. Nucleic Acids Res. 36(Suppl. 1), D919–D922 (2008)

    Google Scholar 

  45. Wishart, D.S., Knox, C., Guo, A.C., Cheng, D., Shrivastava, S., Tzur, D., Gautam, B., Hassanali, M.: Drugbank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36(Suppl. 1), D901–D906 (2008)

    Google Scholar 

  46. Bertsekas, D.P.: Nonlinear programming (1999)

    Google Scholar 

  47. Elman, H.C., Golub, G.H.: Inexact and preconditioned uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31(6), 1645–1661 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  48. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  49. Ding, H., Takigawa, I., Mamitsuka, H., Zhu, S.: Similarity-based machine learning methods for predicting drug-target interactions: a brief review. Briefings in Bioinform., bbt056 (2013)

    Google Scholar 

  50. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 233–240. ACM (2006)

    Google Scholar 

  51. Wu, C., Liao, Q.: An useful tool for finding drug-target interaction in drugbank and KEGG. http://www.cse.ust.hk/~qnature/

  52. Hu, Y., Bajorath, J.: Compound promiscuity: what can we learn from current data? Drug Discov. Today 18(13), 644–650 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by The National Natural Science Foundation of China (under grant No. U1435222 and No. 61502515). And this work was also supported in part by grants from 973 project 2013CB329006, RGC under the contract CERG 16212714.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Liao, Q., Guan, N., Wu, C., Zhang, Q. (2016). Predicting Unknown Interactions Between Known Drugs and Targets via Matrix Completion. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J., Wang, R. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2016. Lecture Notes in Computer Science(), vol 9651. Springer, Cham. https://doi.org/10.1007/978-3-319-31753-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31753-3_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31752-6

  • Online ISBN: 978-3-319-31753-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics