Skip to main content

Hausdorff Continuous Interval Functions and Approximations

  • Conference paper
  • First Online:
Scientific Computing, Computer Arithmetic, and Validated Numerics (SCAN 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9553))

Abstract

The set of interval Hausdorff continuous functions constitutes the largest space preserving basic algebraic and topological structural properties of continuous functions, such as linearity, ring structure, Dedekind order completeness, etc. Spaces of interval functions have important applications not only in the construction of numerical methods and algorithms, but to problems in abstract areas such as real analysis, set-valued analysis, approximation theory and the analysis of PDEs. In this work, we summarize some basic results about the family of interval Hausdorff continuous functions that make interval analysis a bridge between numerical and real analysis. We focus on some approximation issues formulating a new result on the Hausdorff approximation of Hausdorff continuous functions by interval step functions. The Hausdorff approximation of the Heaviside interval step function by sigmoid functions arising from biological applications is also considered, and an estimate for the Hausdorff distance is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    For brevity we shall further write “interval function” instead of “interval-valued function”.

  2. 2.

    In topology, a meagre set, also called a set of first Baire category, is a set that, considered as a subset of a (usually larger) topological space, is small or negligible.

References

  1. Anguelov, R.: Dedekind order completion of \(C(X)\) by Hausdorff continuous functions. Quaestiones Mathematicae 27, 153–170 (2004)

    Article  MathSciNet  Google Scholar 

  2. Anguelov, R., Markov, S.: Extended segment analysis, Freiburger Intervall-Berichte, Inst. Angew. Math, U. Freiburg i. Br. 10, pp. 1–63 (1981)

    Google Scholar 

  3. Anguelov, R., Markov, S., Sendov, B.: On the normed linear space of Hausdorff continuous functions. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2005. LNCS, vol. 3743, pp. 281–288. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Anguelov, R., Markov, S., Sendov, B.: Algebraic operations on the space of Hausdorff continuous interval functions. In: Bojanov, B. (ed.) Constructive Theory of Functions, pp. 35–44. Marin Drinov Academic Publishing House, Sofia (2006)

    MATH  Google Scholar 

  5. Anguelov, R., Markov, S., Sendov, B.: The set of Hausdorff continuous functions–the largest linear space of interval functions. Reliable Comput. 12, 337–363 (2006). http://dx.doi.org/10.1007/s11155-006-9006-5

    Article  MathSciNet  Google Scholar 

  6. Anguelov, R., Rosinger, E.E.: Hausdorff continuous solutions of nonlinear PDEs through the order completion method. Quaest. Math. 28, 271–285 (2005)

    Article  MathSciNet  Google Scholar 

  7. Anguelov, R., Rosinger, E.E.: Solving large classes of nonlinear systems of PDEs. Comput. Math. Appl. 53, 491–507 (2007)

    Article  MathSciNet  Google Scholar 

  8. Anguelov, R., Markov, S., Minani, F.: Hausdorff continuous viscosity solutions of Hamilton-Jacobi equations. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2009. LNCS, vol. 5910, pp. 231–238. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Anguelov, R., van der Walt, J.H.: Order Convergence on \(C (X)\). Quaestiones Mathematicae 28(4), 425–457 (2005)

    Article  MathSciNet  Google Scholar 

  10. Anguelov, R., Kalenda, O.F.K.: The convergence space of minimal USCO mappings. CZECHOSLOVAK MATH. J. 59(1), 101–128 (2009)

    Article  MathSciNet  Google Scholar 

  11. Anguelov, R.: Rational extensions of \(C(X)\) via Hausdorff continuous functions. Thai J. Math. 5(2), 261–272 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Anguelov, R., van der Walt, J.H.: Algebraic and topological structure of some spaces of set-valued maps. Comput. Math. Appl. 66, 1643–1654 (2013)

    Article  MathSciNet  Google Scholar 

  13. Baire, R.: Lecons sur les Fonctions Discontinues. Collection Borel, Paris (1905)

    MATH  Google Scholar 

  14. Costarelli, D., Spigler, R.: Approximation results for neural network operators activated by sigmoidal functions. Neural Netw. 44, 101–106 (2013)

    Article  Google Scholar 

  15. Dilworth, R.P.: The normal completion of the lattice of continuous functions. Trans. Amer. Math. Soc. 68, 427–438 (1950)

    Article  MathSciNet  Google Scholar 

  16. Dimitrov, S., Markov, S.: Metabolic Rate Constants: some Computational Aspects, Mathematics and Computers in Simulation (2015). doi:10.1016/j.matcom.2015.11.003

    Article  MathSciNet  Google Scholar 

  17. Hausdorff, F.: Set theory, 2nd edn. Chelsea Publ., New York (1962) [1957], ISBN 978-0821838358 (Republished by AMS-Chelsea 2005)

    Google Scholar 

  18. Kraemer, W., Gudenberg, J.W.v (eds.): Scientific Computing, Validated Numerics, Interval Methods, Proc. SCAN-2000/Interval-2000, Kluwer/Plenum (2001)

    Google Scholar 

  19. Markov, S.: Biomathematics and interval analysis: A prosperous marriage. In: Christov, C., Todorov, M.D. (eds.) Proceedings of the 2nd International Conference on Application of Mathematics in Technical and Natural Sciences (AMiTaNS’10), AIP Conference Proceedings 1301, 26–36 (2010)

    Google Scholar 

  20. Markov, S.: Cell Growth Models Using Reaction Schemes: Batch Cultivation, Biomath 2/2, 1312301 (2013). http://dx.doi.org/10.11145/j.biomath.2013.12.301

  21. Sendov, B.: Hausdorff Approximations. Kluwer, Boston (1990)

    Book  Google Scholar 

  22. van der Walt, J. H.: The Linear Space of Hausdorff Continuous Interval Functions. Biomath 2, 1311261 (2013). http://dx.doi.org/10.11145/j.biomath.2013.11.261

  23. Mathematics Subject Classification (MSC2010), AMS (2010). http://www.ams.org/mathscinet/msc/msc2010.html

Download references

Acknowledgments

RA acknowledges partial support of the National Research Foundation of South Africa. RA and SM acknowledge partial support by the Institute of Mathematics and Informatics at the Bulgarian Academy of Sciences. The authors thank Prof. Kamen Ivanov for the analysis and derivation of formula (9). They are grateful to the anonimous reviewer for his careful reading and many remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetoslav Markov .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Anguelov, R., Markov, S. (2016). Hausdorff Continuous Interval Functions and Approximations. In: Nehmeier, M., Wolff von Gudenberg, J., Tucker, W. (eds) Scientific Computing, Computer Arithmetic, and Validated Numerics. SCAN 2015. Lecture Notes in Computer Science(), vol 9553. Springer, Cham. https://doi.org/10.1007/978-3-319-31769-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31769-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31768-7

  • Online ISBN: 978-3-319-31769-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics