Skip to main content

Classification of Tumor Epithelium and Stroma in Colorectal Cancer Based on Discrete Tchebichef Moments

  • Conference paper
  • First Online:
Clinical Image-Based Procedures. Translational Research in Medical Imaging (CLIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9401))

Included in the following conference series:

Abstract

Colorectal cancer is a major cause of mortality. As the disease progresses, adenomas and their surrounding tissue are modified. Therefore, a large number of samples from the epithelial cell layer and stroma must be collected and analyzed manually to estimate the potential evolution and stage of the disease. In this study, we propose a novel method for automatic classification of tumor epithelium and stroma in digitized tissue microarrays. To this end, we use discrete Tchebichef moments (DTMs) to characterize tumors based on their textural information. DTMs are able to capture image features in a non-redundant way providing a unique description. A support vector machine was trained to classify a dataset composed of 1376 tissue microarrays from 643 patients with colorectal cancer. The proposal achieved 97.62 % of sensitivity and 95 % of specificity showing the effectiveness of the methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Calon, A., Lonardo, E., Berenguer-Llergo, A., Espinet, E., Hernando-Momblona, X., Iglesias, M., Sevillano, M., Palomo-Ponce, S., Tauriello, D.V., Byrom, D., Cortina, C., Morral, C., Barcelo, C., Tosi, S., Riera, A., Attolini, C., Rossell, D., Sancho, E., Batlle, E.: Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat. Genet. 47(4), 320–329 (2015)

    Article  Google Scholar 

  2. Conti, J., Thomas, G.: The role of tumour stroma in colorectal cancer invasion and metastasis. Cancers 3(2), 2160 (2011)

    Article  Google Scholar 

  3. Doyle, S., Feldman, M., Tomaszewski, J., Madabhushi, A.: A boosted Bayesian multiresolution classifier for prostate cancer detection from digitized needle biopsies. IEEE Trans. Biomed. Eng. 59(5), 1205–1218 (2012)

    Article  Google Scholar 

  4. Ferlay, J., Soerjomataram, I., Ervik, M., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D., Forman, D., Bray, F.: GLOBOCAN2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 (2014). http://globocan.iarc.fr/

  5. Flusser, J., Suk, T., Zitová, B.: Introduction to Moments, pp. 1–11. Wiley (2009)

    Google Scholar 

  6. Foran, D.J., Yang, L., Chen, W., Hu, J., Goodell, L.A., Reiss, M., Wang, F., Kurc, T., Pan, T., Sharma, A., et al.: Imageminer: a software system for comparative analysis of tissue microarrays using content-based image retrieval, high-performance computing, and grid technology. J. Am. Med. Inf. Assoc. 18(4), 403–415 (2011)

    Article  Google Scholar 

  7. Hayat, M.: Introduction: colorectal cancer. In: Hayat, M. (ed.) Colorectal Cancer. Methods of Cancer Diagnosis, Therapy, and Prognosis, vol. 4, pp. 3–9. Springer, Netherlands (2009)

    Chapter  Google Scholar 

  8. Isella, C., Terrasi, A., Bellomo, S.E., Petti, C., Galatola, G., Muratore, A., Mellano, A., Senetta, R., Cassenti, A., Sonetto, C., Inghirami, G., Trusolino, L., Fekete, Z., De Ridder, M., Cassoni, P., Storme, G., Bertotti, A., Medico, E.: Stromal contribution to the colorectal cancer transcriptome. Nat. Genet. 47(4), 312–319 (2015)

    Article  Google Scholar 

  9. Janowczyk, A., Chandran, S., Madabhushi, A.: Quantifying local heterogeneity via morphologic scale: distinguishing tumoral from stromal regions. J. Pathol. Inf. 4(Suppl), S8 (2013)

    Google Scholar 

  10. Jemal, A., Bray, F., Center, M., Ferlay, J., Ward, E., Forman, D.: Global cancer statistics. CA: Cancer J. Clin. 61(2), 69–90 (2011)

    Google Scholar 

  11. Kwak, J.T., Hewitt, S.M., Sinha, S., Bhargava, R.: Multimodal microscopy for automated histologic analysis of prostate cancer. BMC Cancer 11(1), 62 (2011)

    Article  Google Scholar 

  12. Linder, N., Konsti, J., Turkki, R., Rahtu, E., Lundin, M., Nordling, S., Haglund, C., Ahonen, T., Pietikäinen, M., Lundin, J.: Identification of tumor epithelium and stroma in tissue microarrays using texture analysis. Diagn. Pathol. 7(1), 22 (2012)

    Article  Google Scholar 

  13. Marcos, J.V., Cristóbal, G.: Texture classification using discrete Tchebichef moments. J. Opt. Soc. Am. A 30(8), 1580–1591 (2013)

    Article  Google Scholar 

  14. Mukundan, R.: Some computational aspects of discrete orthonormal moments. IEEE Trans. Image Process. 13(8), 1055–1059 (2004)

    Article  MathSciNet  Google Scholar 

  15. Mukundan, R., Ong, S., Lee, P.: Image analysis by Tchebichef moments. IEEE Trans. Image Process. 10(9), 1357–1364 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nava, R., Marcos, J.V., Escalante-Ramírez, B., Cristóbal, G., Perrinet, L.U., Estépar, R.S.J.: Advances in texture analysis for emphysema classification. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013, Part II. LNCS, vol. 8259, pp. 214–221. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Nicholson, A.D., Guo, X., Sullivan, C.A., Cha, C.H.: Automated quantitative analysis of tissue microarray of 443 patients with colorectal adenocarcinoma: Low expression of bcl-2 predicts poor survival. J. Am. Coll. Surg. 219(5), 977–987 (2014)

    Article  Google Scholar 

  18. Ojala, T., Pietikäinen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  19. Simon, R., Mirlacher, M., Sauter, G.: Tissue microarrays in cancer diagnosis. Expert Rev. Mol. Diagn. 3(4), 421–430 (2003)

    Article  Google Scholar 

  20. Wang, C.W., Fennell, D., Paul, I., Savage, K., Hamilton, P.: Robust automated tumour segmentation on histological and immunohistochemical tissue images. PloS One 6(2), e15818 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors extend their gratitude to Prof. Dr. Johan Lundin for providing the images. This publication was supported by the European social fund within the project CZ.1.07/2.3.00/30.0034 and UNAM PAPIIT grant IG100814. R. Nava thanks Consejo Nacional de Ciencia y Tecnología (CONACYT). G. González thanks CONACYT–263921 scholarship. J. Kybic was supported by the Czech Science Foundation project 14-21421S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Nava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nava, R., González, G., Kybic, J., Escalante-Ramírez, B. (2016). Classification of Tumor Epithelium and Stroma in Colorectal Cancer Based on Discrete Tchebichef Moments. In: Oyarzun Laura, C., et al. Clinical Image-Based Procedures. Translational Research in Medical Imaging. CLIP 2015. Lecture Notes in Computer Science(), vol 9401. Springer, Cham. https://doi.org/10.1007/978-3-319-31808-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31808-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31807-3

  • Online ISBN: 978-3-319-31808-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics