Skip to main content

Relational Learning for Sustainable Health

  • Chapter
  • First Online:
Computational Sustainability

Part of the book series: Studies in Computational Intelligence ((SCI,volume 645))

  • 1154 Accesses

Abstract

Sustainable healthcare is a global need and requires better value–better health–for patients at lower cost. Predictive models have the opportunity to greatly increase value without increasing cost. Concrete examples include reducing heart attacks and reducing adverse drug events by accurately predicting them before they occur. In this paper we examine how accurately such events can be predicted presently and discuss a machine learning approach that produces accurate such predictive models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.alz.org/alzheimers_disease_trajectory.asp.

References

  1. Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, Secaucus (2006)

    MATH  Google Scholar 

  2. Blockeel, H.: Top-down induction of first order logical decision trees. AI Commun. 12(1–2), 119–120 (1999)

    Google Scholar 

  3. Chen, K., Reiman, E.M., Alexander, G.E., Bandy, D., Renaut, R., Crum, W.R., Fox, N.C., Rossor, M.N.: An automated algorithm for the computation of brain volume change from sequential mris using an iterative principal component analysis and its evaluation for the assessment of whole-brain atrophy rates in patients with probable Alzheimer’s disease. Neuroimage 22(1), 134–143 (2004)

    Article  Google Scholar 

  4. Craven, M., Shavlik, J.: Extracting tree-structured representations of trained networks. In: NIPS, pp. 24–30 (1996)

    Google Scholar 

  5. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines: and Other Kernel-Based Learning Methods. Cambridge University Press, New York (2000)

    Book  MATH  Google Scholar 

  6. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B. 39(1), 1–38 (1977)

    Google Scholar 

  8. Detrano, R., Guerci, A.D., Carr, J.J., et al.: Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N. Engl. J. Med. 358, 1338–1345 (2008)

    Article  Google Scholar 

  9. Dietterich, T.G., Ashenfelter, A., Bulatov, Y.: Training conditional random fields via gradient tree boosting. In: ICML (2004)

    Google Scholar 

  10. Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for AI. Morgan & Claypool, San Rafael (2009)

    MATH  Google Scholar 

  11. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: ICML, pp. 148–156 (1996)

    Google Scholar 

  12. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 189–1232 (2001)

    Google Scholar 

  13. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recogn. 44, 1761–1776 (2011)

    Article  Google Scholar 

  14. Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: Dzeroski, S., Lavrac, N. (eds.) Relational Data Mining (2001)

    Google Scholar 

  15. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)

    Google Scholar 

  16. Glesner, S., Koller, D.: Constructing flexible dynamic belief networks from first-order probabilistic knowledge bases. In: Froidevaux, C., Kohlas, J. (eds.) Proceedings of the European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU’95), pp. 217–226. Springer, Berlin (1995)

    Google Scholar 

  17. Gurwitz, J.H., Field, T.S., Harrold, L.R., Rothschild, J., Debellis, K., Seger, A.C., Cadoret, C., Fish, L.S., Garber, L., Kelleher, M., Bates, D.W.: Incidence and preventability of adverse drug events among older persons in the ambulatory setting. JAMA 289, 1107–1116 (2003)

    Google Scholar 

  18. Gutmann, B., Kersting, K.: Tildecrf: conditional random fields for logical sequences. In: ECML (2006)

    Google Scholar 

  19. Huang, J., Ling, C.X.: Using auc and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 17(3), 299–310 (2005)

    Google Scholar 

  20. John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345. Morgan Kaufmann (1995)

    Google Scholar 

  21. Khot, T., Natarajan, S., Kersting, K., Shavlik, J.: Learning markov logic networks via functional gradient boosting. In: ICDM (2011)

    Google Scholar 

  22. Knerr, S., Personnaz, L., Dreyfus, G.: Single-layer learning revisited: a stepwise procedure for building and training a neural network. In: Soulié, F.F., Hérault, J. (eds) Neurocomputing: Algorithms, Architectures and Applications, vol. F68, pp. 41–50. Springer (1990)

    Google Scholar 

  23. Koller, D., Pfeffer, A.: Object-oriented Bayesian networks. In: Proceedings of the 13th Annual Conference on Uncertainty in AI (UAI), pp. 302–313, (1997). Winner of the Best Student Paper Award

    Google Scholar 

  24. Lavrac, N., Dzeroski, S.: Inductive Logic Programming—Techniques and Applications. Ellis Horwood Series in Artificial Intelligence. Ellis Horwood, New York (1994)

    MATH  Google Scholar 

  25. Lazarou, J., Pomeranz, B.H., Corey, P.N.: Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279, 1200–1205 (1998)

    Article  Google Scholar 

  26. McCarty, C.A., Peissig, P., Caldwell, M.D., Wilke, R.A.: The marshfield clinic personalized medicine research project: 2008 scientific update and lessons learned in the first 6 years. Personalized Med. 5(5), 529–542 (2008)

    Article  Google Scholar 

  27. McCarty, C.A., Wilke, R.A., Giampietro, P.F., Wesbrook, S.D., Caldwell, M.D.: Marshfield clinic personalized medicine research project (pmrp): design, methods and recruitment for a large population-based biobank. Personalized Med. 2(1), 49–79 (2005)

    Article  Google Scholar 

  28. Mitchell, T.: Machine Learning, 1st edn. McGraw-Hill Inc., New York (1997)

    MATH  Google Scholar 

  29. Murphy, K.: Machine Learning: A Probabilistic Perspective. MIT Press (2012)

    Google Scholar 

  30. Natarajan, S., Joshi, S., Saha, B., Edwards, A., Khot, T., Moody, E., Kersting, K., Whitlow, C., Maldjian, J.: A machine learning pipeline for three-way classification of alzheimer patients from structural magnetic resonance images of the brain. In: IEEE Conference on Machine Learning and Applications (ICMLA) (2012)

    Google Scholar 

  31. Natarajan, S., Joshi, S., Saha, B., Edwards, A., Khot, T., Moody, E., Kersting, K., Whitlow, C., Maldjian, J.: Relational learning helps in three-way classification of alzheimer patients from structural magnetic resonance images of the brain. Int. J. Mach. Learn. Cybern. (2013)

    Google Scholar 

  32. Natarajan, S., Joshi, S., Tadepalli, P., Kersting, K., Shavlik, J.: Imitation learning in relational domains: a functional-gradient boosting approach. In: IJCAI, pp. 1414–1420 (2011)

    Google Scholar 

  33. Natarajan, S., Kersting, K., Ip, E., Jacobs, D., Carr, J.: Early prediction of coronary artery calcification levels using machine learning. In: Innovative Appl. AI (2013)

    Google Scholar 

  34. Natarajan, S., Khot, T., Kersting, K., Gutmann, B., Shavlik, J.: Gradient-based boosting for statistical relational learning. Relational Depend. Netw. Case MLJ (2012)

    Google Scholar 

  35. Page, D., Natarajan, S., Costa, V.S., Peissig, P., Barnard, A., Caldwell, M.: Identifying adverse drug events from multi-relational healthcare data. In: AAAI (2012)

    Google Scholar 

  36. Quinlan, J.: C4.5: Programs for Machine Learning (1993)

    Google Scholar 

  37. Quinlan, J.R.: Bagging, boosting, and c4.5. In: AAAI/IAAI, vol. 1, pp. 725–730 (1996)

    Google Scholar 

  38. De Raedt, L.: Logical and Relational Learning: From ILP to MRDM (Cognitive Technologies). Springer, New York (2008)

    Google Scholar 

  39. Roge, V.L., Go, A.S., et al., Lloyd-Jones, D.M.: Heart disease and stroke statistics-2011 update: a report from the american heart association. Circulation 123, e18–e209 (2011)

    Google Scholar 

  40. Schapire, R., Freund, Y.: Boosting: Foundations and Algorithms. The MIT Press (2012)

    Google Scholar 

  41. Srinivasan, A.: The Aleph Manual (2004)

    Google Scholar 

  42. Sun, L., Patel, R., Liu, J., Chen, K., Wu, T., Li, J., Reiman, E., Ye, J.: Mining brain region connectivity for alzheimer’s disease study via sparse inverse covariance estimation. In: KDD (2009)

    Google Scholar 

  43. Supekar, K., Menon, V., Rubin, D., Musen, M., Greicius, M.D.: Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput. Biol. 4(6), e1000100 (2008)

    Article  Google Scholar 

  44. Weiss, J., Natarajan, S., Peissig, P., McCarty, C., Page, D.: Statistical relational learning to predict primary myocardial infarction from electronic health records. In: Innovative Applications in AI (2012)

    Google Scholar 

  45. Weiss, J., Natarajan, S., Peissig, P., McCarty, C., Page, D.: Statistical relational learning to predict primary myocardial infarction from electronic health records. In: AI Magazine (2012)

    Google Scholar 

  46. Jieping, Y., Gene, A., Eric, R., Kewei, C., Wu, T., Jing, L., Zheng, Z., Rinkal, P., Min, B., Ravi, J., et al.: Heterogeneous data fusion for alzheimer’s disease study. In: KDD, p. 1025 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sriraam Natarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Natarajan, S., Peissig, P.L., Page, D. (2016). Relational Learning for Sustainable Health. In: Lässig, J., Kersting, K., Morik, K. (eds) Computational Sustainability. Studies in Computational Intelligence, vol 645. Springer, Cham. https://doi.org/10.1007/978-3-319-31858-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31858-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31856-1

  • Online ISBN: 978-3-319-31858-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics