Abstract
Sustainable healthcare is a global need and requires better value–better health–for patients at lower cost. Predictive models have the opportunity to greatly increase value without increasing cost. Concrete examples include reducing heart attacks and reducing adverse drug events by accurately predicting them before they occur. In this paper we examine how accurately such events can be predicted presently and discuss a machine learning approach that produces accurate such predictive models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, Secaucus (2006)
Blockeel, H.: Top-down induction of first order logical decision trees. AI Commun. 12(1–2), 119–120 (1999)
Chen, K., Reiman, E.M., Alexander, G.E., Bandy, D., Renaut, R., Crum, W.R., Fox, N.C., Rossor, M.N.: An automated algorithm for the computation of brain volume change from sequential mris using an iterative principal component analysis and its evaluation for the assessment of whole-brain atrophy rates in patients with probable Alzheimer’s disease. Neuroimage 22(1), 134–143 (2004)
Craven, M., Shavlik, J.: Extracting tree-structured representations of trained networks. In: NIPS, pp. 24–30 (1996)
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines: and Other Kernel-Based Learning Methods. Cambridge University Press, New York (2000)
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B. 39(1), 1–38 (1977)
Detrano, R., Guerci, A.D., Carr, J.J., et al.: Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N. Engl. J. Med. 358, 1338–1345 (2008)
Dietterich, T.G., Ashenfelter, A., Bulatov, Y.: Training conditional random fields via gradient tree boosting. In: ICML (2004)
Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for AI. Morgan & Claypool, San Rafael (2009)
Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: ICML, pp. 148–156 (1996)
Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 189–1232 (2001)
Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recogn. 44, 1761–1776 (2011)
Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: Dzeroski, S., Lavrac, N. (eds.) Relational Data Mining (2001)
Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)
Glesner, S., Koller, D.: Constructing flexible dynamic belief networks from first-order probabilistic knowledge bases. In: Froidevaux, C., Kohlas, J. (eds.) Proceedings of the European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty (ECSQARU’95), pp. 217–226. Springer, Berlin (1995)
Gurwitz, J.H., Field, T.S., Harrold, L.R., Rothschild, J., Debellis, K., Seger, A.C., Cadoret, C., Fish, L.S., Garber, L., Kelleher, M., Bates, D.W.: Incidence and preventability of adverse drug events among older persons in the ambulatory setting. JAMA 289, 1107–1116 (2003)
Gutmann, B., Kersting, K.: Tildecrf: conditional random fields for logical sequences. In: ECML (2006)
Huang, J., Ling, C.X.: Using auc and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 17(3), 299–310 (2005)
John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345. Morgan Kaufmann (1995)
Khot, T., Natarajan, S., Kersting, K., Shavlik, J.: Learning markov logic networks via functional gradient boosting. In: ICDM (2011)
Knerr, S., Personnaz, L., Dreyfus, G.: Single-layer learning revisited: a stepwise procedure for building and training a neural network. In: Soulié, F.F., Hérault, J. (eds) Neurocomputing: Algorithms, Architectures and Applications, vol. F68, pp. 41–50. Springer (1990)
Koller, D., Pfeffer, A.: Object-oriented Bayesian networks. In: Proceedings of the 13th Annual Conference on Uncertainty in AI (UAI), pp. 302–313, (1997). Winner of the Best Student Paper Award
Lavrac, N., Dzeroski, S.: Inductive Logic Programming—Techniques and Applications. Ellis Horwood Series in Artificial Intelligence. Ellis Horwood, New York (1994)
Lazarou, J., Pomeranz, B.H., Corey, P.N.: Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279, 1200–1205 (1998)
McCarty, C.A., Peissig, P., Caldwell, M.D., Wilke, R.A.: The marshfield clinic personalized medicine research project: 2008 scientific update and lessons learned in the first 6 years. Personalized Med. 5(5), 529–542 (2008)
McCarty, C.A., Wilke, R.A., Giampietro, P.F., Wesbrook, S.D., Caldwell, M.D.: Marshfield clinic personalized medicine research project (pmrp): design, methods and recruitment for a large population-based biobank. Personalized Med. 2(1), 49–79 (2005)
Mitchell, T.: Machine Learning, 1st edn. McGraw-Hill Inc., New York (1997)
Murphy, K.: Machine Learning: A Probabilistic Perspective. MIT Press (2012)
Natarajan, S., Joshi, S., Saha, B., Edwards, A., Khot, T., Moody, E., Kersting, K., Whitlow, C., Maldjian, J.: A machine learning pipeline for three-way classification of alzheimer patients from structural magnetic resonance images of the brain. In: IEEE Conference on Machine Learning and Applications (ICMLA) (2012)
Natarajan, S., Joshi, S., Saha, B., Edwards, A., Khot, T., Moody, E., Kersting, K., Whitlow, C., Maldjian, J.: Relational learning helps in three-way classification of alzheimer patients from structural magnetic resonance images of the brain. Int. J. Mach. Learn. Cybern. (2013)
Natarajan, S., Joshi, S., Tadepalli, P., Kersting, K., Shavlik, J.: Imitation learning in relational domains: a functional-gradient boosting approach. In: IJCAI, pp. 1414–1420 (2011)
Natarajan, S., Kersting, K., Ip, E., Jacobs, D., Carr, J.: Early prediction of coronary artery calcification levels using machine learning. In: Innovative Appl. AI (2013)
Natarajan, S., Khot, T., Kersting, K., Gutmann, B., Shavlik, J.: Gradient-based boosting for statistical relational learning. Relational Depend. Netw. Case MLJ (2012)
Page, D., Natarajan, S., Costa, V.S., Peissig, P., Barnard, A., Caldwell, M.: Identifying adverse drug events from multi-relational healthcare data. In: AAAI (2012)
Quinlan, J.: C4.5: Programs for Machine Learning (1993)
Quinlan, J.R.: Bagging, boosting, and c4.5. In: AAAI/IAAI, vol. 1, pp. 725–730 (1996)
De Raedt, L.: Logical and Relational Learning: From ILP to MRDM (Cognitive Technologies). Springer, New York (2008)
Roge, V.L., Go, A.S., et al., Lloyd-Jones, D.M.: Heart disease and stroke statistics-2011 update: a report from the american heart association. Circulation 123, e18–e209 (2011)
Schapire, R., Freund, Y.: Boosting: Foundations and Algorithms. The MIT Press (2012)
Srinivasan, A.: The Aleph Manual (2004)
Sun, L., Patel, R., Liu, J., Chen, K., Wu, T., Li, J., Reiman, E., Ye, J.: Mining brain region connectivity for alzheimer’s disease study via sparse inverse covariance estimation. In: KDD (2009)
Supekar, K., Menon, V., Rubin, D., Musen, M., Greicius, M.D.: Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput. Biol. 4(6), e1000100 (2008)
Weiss, J., Natarajan, S., Peissig, P., McCarty, C., Page, D.: Statistical relational learning to predict primary myocardial infarction from electronic health records. In: Innovative Applications in AI (2012)
Weiss, J., Natarajan, S., Peissig, P., McCarty, C., Page, D.: Statistical relational learning to predict primary myocardial infarction from electronic health records. In: AI Magazine (2012)
Jieping, Y., Gene, A., Eric, R., Kewei, C., Wu, T., Jing, L., Zheng, Z., Rinkal, P., Min, B., Ravi, J., et al.: Heterogeneous data fusion for alzheimer’s disease study. In: KDD, p. 1025 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Natarajan, S., Peissig, P.L., Page, D. (2016). Relational Learning for Sustainable Health. In: Lässig, J., Kersting, K., Morik, K. (eds) Computational Sustainability. Studies in Computational Intelligence, vol 645. Springer, Cham. https://doi.org/10.1007/978-3-319-31858-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-31858-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31856-1
Online ISBN: 978-3-319-31858-5
eBook Packages: EngineeringEngineering (R0)