Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 383))

  • 641 Accesses

Abstract

This paper proposes a straightforward and systematic way of designing a decentralized control. The main setup steps are the interaction analysis, the decoupling of the interactions, and the design of the controllers. The proposed procedure is applied on identified models of a turboprop engine. The interaction analysis leads to the choice of a decentralized strategy with a full compensator. On each operating point, an inverted decoupler is selected in order to reduce interactions, and PI controllers are designed using an analytical method. The control laws robustness is then ensured using the structured singular value approach. Finally, control laws performances are validated using the non-linear simulation model of turboprop engine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Le Brun, C., Godoy, E., Beauvois, D., Liacu, B., Noguera, R.: Control laws design of a turboprop engine. Appl. Mech. Mater. 704, 362–367 (2014)

    Article  Google Scholar 

  2. Soares, C.: Gas Turbines: A Handbook of Air, Land and Sea Application. Butterworth-Heinemann (2008)

    Google Scholar 

  3. High, G.T., Prevallet, L.C., Free, J.W.: Apparatus for decoupling a torque loop from a speed loop in a power management system for turboprop engines. US 5274558 A (1991)

    Google Scholar 

  4. Le Brun: Analyse et commande de systèmes multivariables - Application à un turbopropulseur. PhD CentraleSupélec (2015)

    Google Scholar 

  5. Bristol, E.: On a new measure of interactions for multivariable process control. IEEE Autom. Control 11(1), 133–134 (1966)

    Article  Google Scholar 

  6. Maciejowski, J.M.: Multivariable Feedback Design. Addison Wiley (1989)

    Google Scholar 

  7. Hovd, M., Skogestad, S.: Simple frequency-dependent tools for control system analysis, structure selection and design. Automatica 28(5), 989–996 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Birk, W., Medvedev, A.: A note on gramian-based interaction measures. In: Proceedings of European Control Conference, Cambridge, UK (2003)

    Google Scholar 

  9. Wittenmark, B., Salgado, M.E.: Hankel-norm based interaction measure for input-output pairing. IFAC, Barcelona, Spain (2002)

    Google Scholar 

  10. Salgado, M.E., Conley, A.: MIMO interaction measure and controller structure selection. Int. J. Control 77(4), 367–383 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Halvarsson, B.: Interaction Analysis in Multivariable Control Systems. PhD, Uppsala University (2010)

    Google Scholar 

  12. Niederlinski, A.: A heuristic approach to the design of linear multivariable interacting control systems. Automatica 7, 691–701 (1971)

    Article  MATH  Google Scholar 

  13. He, M.J., Cai, W.-J.: New criterion for control-loop configuration of multivariable processes. Ind. Eng. Chem. Res. 43(22), 7057–7064 (2004)

    Article  Google Scholar 

  14. Ford, M.P., Daly, K.C.: Dominance improvement by pseudodecoupling. In: Proceedings of the Institution of Electrical Engineers, vol. 126, no. 12, pp. 1316–1320 (1979)

    Google Scholar 

  15. MacFarlane, A.G.J., Kouvaritakis, B.: A design technique for linear multivariable feedback systems. Int. J. Control 25(6), 837–874 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gagnon, E., Pomerleau, A., Desbiens, A.: Simplified, ideal or inverted decoupling? ISA Trans. 37. 265–276 (1998)

    Google Scholar 

  17. Garrido, J., Vasquez, F., Morilla, F.: Generalized Inverted Decoupling for TITO processes. IFAC, Milano, Italy (2011)

    Google Scholar 

  18. Rivera, D.E., Morari, M., Skogestad, S.: Internal model control. 4. PID controller design. Ind. Eng. Chem. Process Des. Dev. 25, 252 (1986)

    Google Scholar 

  19. Ferreres, G.: A Practical Approach to Robustness Analysis with Aeronautical Applications. Kluwer Academic Publishers (1999)

    Google Scholar 

  20. Âström, K.J., Hägglund, T.: PID Controllers: Theory, Design, and Tuning, 2nd edn. ISA (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Le Brun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Le Brun, C., Godoy, E., Beauvois, D., Liacu, B., Noguera, R. (2016). Decentralized Control: Application to a Turboprop Engine. In: Filipe, J., Madani, K., Gusikhin, O., Sasiadek, J. (eds) Informatics in Control, Automation and Robotics 12th International Conference, ICINCO 2015 Colmar, France, July 21-23, 2015 Revised Selected Papers. Lecture Notes in Electrical Engineering, vol 383. Springer, Cham. https://doi.org/10.1007/978-3-319-31898-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31898-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31896-7

  • Online ISBN: 978-3-319-31898-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics