Skip to main content

Bio-Inspired Algorithms and Preferences for Multi-objective Problems

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9648))

Included in the following conference series:

  • 2186 Accesses

Abstract

Multi-objective optimization evolutionary algorithms have been applied to solve many real-life decision problems. Most of them require the management of trade-offs between multiple objectives. Reference point approaches highlight a preferred set of solutions in relevant areas of Pareto frontier and support the decision makers to take more confidence evaluation. This paper extends some well-known algorithms to work with collective preferences and interactive techniques. In order to analyse the results driven by the online reference points, two new performance indicators are introduced and tested against some synthetic problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://playcanv.as/p/1ARj738G.

References

  1. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  2. Coello, C.C., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, New York (2007)

    MATH  Google Scholar 

  3. Conover, W.: Practical Nonparametric Statistics. Wiley, New York (1999)

    Google Scholar 

  4. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deb, K., Kumar, A.: Light beam search based multi-objective optimization using evolutionary algorithms. In: IEEE Congress on Evolutionary Computation, 2007, CEC 2007, pp. 2125–2132. IEEE (2007)

    Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Deb, K., Sundar, J., Udaya Bhaskara Rao, N., Chaudhuri, S.: Reference point based multi-objective optimization using evolutionary algorithms. Int. J. Comput. Intell. Res. 2(3), 273–286 (2006)

    MathSciNet  Google Scholar 

  8. Grinstead, C.M., Snell, J.L.: Introduction to Probability. American Mathematical Soc., Providence (2012)

    MATH  Google Scholar 

  9. Malone, T.W., Laubacher, R., Dellarocas, C.: Harnessing crowds: mapping the genome of collective intelligence (2009)

    Google Scholar 

  10. Martınez, S.Z., Coello, C.A.C.: An archiving strategy based on the convex hull of individual minima for MOEAs (2010)

    Google Scholar 

  11. Shan-Fan, J., Xiong, S.W., Zhuo-Wang, J.: The multi-objective differential evolution algorithm based on quick convex hull algorithms. In: Fifth International Conference on Natural Computation, 2009, ICNC 2009, vol. 4, pp. 469–473. IEEE (2009)

    Google Scholar 

  12. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm (2001)

    Google Scholar 

Download references

Acknowledgments

This work was partially funded by CNPq BJT Project 407851/2012-7, FAPERJ APQ1 Project 211.500/2015, FAPERJ APQ1 Project 211.451/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Cinalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Cinalli, D., Martí, L., Sanchez-Pi, N., Garcia, A.C.B. (2016). Bio-Inspired Algorithms and Preferences for Multi-objective Problems. In: Martínez-Álvarez, F., Troncoso, A., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2016. Lecture Notes in Computer Science(), vol 9648. Springer, Cham. https://doi.org/10.1007/978-3-319-32034-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32034-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32033-5

  • Online ISBN: 978-3-319-32034-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics