Skip to main content

Model Selection for Financial Distress Prediction by Aggregating TOPSIS and PROMETHEE Rankings

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2016)

Abstract

Many models have been explored for financial distress prediction, but no consistent conclusions have been drawn on which method shows the best behavior when different performance evaluation measures are employed. Accordingly, this paper proposes the integration of the ranking scores given by two popular multiple-criteria decision-making tools as an important step to help decision makers in selecting the model(s) properly. Selection of the most appropriate prediction method is here shaped as a multiple-criteria decision-making problem that involves a number of performance measures (criteria) and a set of techniques (alternatives). An empirical study is carried out to assess the performance of ten algorithms over six real-life bankruptcy and credit risk databases. The results reveal that the use of a unique performance measure often leads to contradictory conclusions, while the multiple-criteria decision-making techniques may yield a more reliable analysis. Besides, these allow the decision makers to weight the relevance of the individual performance metrics as a function of each particular problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdou, H., Pointon, J.: Credit scoring, statistical techniques and evaluation criteria: a review of the literature. Intell. Syst. Account. Finance Manage. 18(2–3), 59–88 (2011)

    Article  Google Scholar 

  2. Antonakis, A., Sfakianakis, M.E.: Assessing naïve Bayes as a method for screening credit applicants. J. Appl. Stat. 36(5), 537–545 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atiya, A.: Bankruptcy prediction for credit risk using neural networks: a survey and new results. IEEE Trans. Neural Netw. 12(4), 929–935 (2001)

    Article  Google Scholar 

  4. Baesens, B., Gestel, T.V., Viaene, S., Stepanova, M., Suykens, J., Vanthienen, J.: Benchmarking state-of-the-art classification algorithms for credit scoring. J. Oper. Res. Soc. 54(6), 627–635 (2003)

    Article  MATH  Google Scholar 

  5. Bensic, M., Sarlija, N., Zekic-Susac, M.: Modelling small-business credit scoring by using logistic regression, neural networks and decision trees. Intell. Syst. Account. Finance Manage. 13(3), 133–150 (2005)

    Article  Google Scholar 

  6. Brans, J.P., Vincke, P.: A preference ranking organisation method: the PROMETHEE method for multiple criteria decision-making. Manage. Sci. 31(6), 647–656 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Desai, V., Crook, J., Overstreet, G.: A comparison of neural networks and linear scoring models in the credit union environment. Eur. J. Oper. Res. 95(1), 24–37 (1996)

    Article  MATH  Google Scholar 

  8. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA data mining software: an update. SIGKDD Explor. Newslett. 11(1), 10–18 (2009)

    Article  Google Scholar 

  9. Hand, D.: Good practice in retail credit scorecard assessment. J. Oper. Res. Soc. 56(9), 1109–1117 (2005)

    Article  MATH  Google Scholar 

  10. Huang, Z., Chen, H., Hsu, C.J., Chen, W.H., Wu, S.: Credit rating analysis with support vector machines and neural networks: a market comparative study. Decis. Support Syst. 37(4), 543–558 (2004)

    Article  Google Scholar 

  11. Hwang, C.L., Yoon, K.: Multiple Attribute Decision Making - Methods and Applications. Springer, New York (1981)

    Book  MATH  Google Scholar 

  12. Jablonsky, J.: Software support for multiple criteria decision making problems. Manage. Inf. Syst. 4(2), 29–34 (2009)

    Google Scholar 

  13. Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: a Classifier Perspective. Cambridge University Press, New York (2011)

    Book  MATH  Google Scholar 

  14. du Jardin, P.: Predicting bankruptcy using neural networks and other classification methods: the influence of variable selection techniques on model accuracy. Neurocomputing 73(10–12), 2047–2060 (2010)

    Article  Google Scholar 

  15. Köksalan, M., Wallenius, J., Zionts, S.: Multiple Criteria Decision Making: From Early History to the 21st Century. World Scientific, Singapore (2011)

    Book  Google Scholar 

  16. Lee, J.S., Zhu, D.: When costs are unequal and unknown: a subtree graftingapproach for unbalanced data classification. Decis. Sci. 42(4), 803–829 (2011)

    Article  Google Scholar 

  17. Lee, T.S., Chen, I.F.: A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines. Expert Syst. Appl. 28(4), 743–752 (2005)

    Article  Google Scholar 

  18. Lee, T.S., Chiu, C.C., Chou, Y.C., Lu, C.J.: Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Comput. Stat. Data Anal. 50(4), 1113–1130 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Marqués, A., García, V., Sánchez, J.: Two-level classifier ensembles for credit risk assessment. Expert Syst. Appl. 39(12), 10916–10922 (2012)

    Article  Google Scholar 

  20. Min, J., Lee, Y.C.: Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Syst. Appl. 28(4), 603–614 (2005)

    Article  Google Scholar 

  21. Pietruszkiewicz, W.: Dynamical systems and nonlinear Kalman filtering applied in classification. In: Proceedings of the 7th IEEE International Conference on Cybernetic Intelligent Systems, London, UK, pp. 263–268 (2008)

    Google Scholar 

  22. Sabzevari, H., Soleymani, M., Noorbakhsh, E.: A comparison between statistical and data mining methods for credit scoring in case of limited available data. In: Proceedings of the 3rd CRC Credit Scoring Conference, Edinburgh, UK (2007)

    Google Scholar 

  23. Shi, Y., Peng, Y., Kou, G., Chen, Z.: Classifying credit card accounts for business intelligence and decision making: a multiple-criteria quadratic programming approach. Int. J. Inf. Technol. Decis. Making 4(4), 581–599 (2005)

    Article  Google Scholar 

  24. Shih, H.S., Shyur, H.J., Lee, E.: An extension of TOPSIS for group decision making. Math. Comput. Model. 45(7–8), 801–813 (2007)

    Article  MATH  Google Scholar 

  25. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manage. 45(4), 427–437 (2009)

    Article  Google Scholar 

  26. Thomas, L., Edelman, D., Crook, J.: Credit Scoring and Its Applications. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  27. Triantaphyllou, E.: Multi-criteria decision making methods. Multi-Criteria Decision Making Methods: a Comparative Study. Applied Optimization, pp. 5–21. Springer, Berlin (2000)

    Chapter  Google Scholar 

  28. Trustorff, J.H., Konrad, P., Leker, J.: Credit risk prediction using support vector machines. Rev. Quant. Finance Account. 36(4), 565–581 (2011)

    Article  Google Scholar 

  29. Tsai, C.F., Wu, J.W.: Using neural network ensembles for bankruptcy prediction and credit scoring. Expert Syst. Appl. 34(4), 2639–2649 (2008)

    Article  Google Scholar 

  30. Tseng, F., Lin, L.: A quadratic interval logit model for forecasting bankruptcy. Omega 13(1), 85–91 (2005)

    Article  Google Scholar 

  31. Twala, B.: Combining classifiers for credit risk prediction. J. Syst. Sci. Syst. Eng. 18(3), 292–311 (2009)

    Article  Google Scholar 

  32. Wang, G., Hao, J., Ma, J., Jiang, H.: A comparative assessment of ensemble learning for credit scoring. Expert Syst. Appl. 38(1), 223–230 (2011)

    Article  Google Scholar 

  33. Yobas, M., Crook, J., Ross, P.: Credit scoring using neural and evolutionary techniques. IMA J. Math. Appl. Bus. Ind. 11(4), 111–125 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work has partially been supported by the Spanish Ministry of Economy [TIN2013-46522-P], the Generalitat Valenciana [PROMETEOII/2014/062], the Mexican PRODEP [DSA/103.5/15/7004] and the Mexican Science and Technology Council through the Postdoctoral Fellowship Program [232167].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Salvador Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

García, V., Marqués, A.I., Cleofas-Sánchez, L., Sánchez, J.S. (2016). Model Selection for Financial Distress Prediction by Aggregating TOPSIS and PROMETHEE Rankings. In: Martínez-Álvarez, F., Troncoso, A., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2016. Lecture Notes in Computer Science(), vol 9648. Springer, Cham. https://doi.org/10.1007/978-3-319-32034-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32034-2_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32033-5

  • Online ISBN: 978-3-319-32034-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics