Skip to main content

Extending Probabilistic Encoding for Discovering Biclusters in Gene Expression Data

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2016)

Abstract

In this work, we have extended the experimental analysis about an encoding approach for evolutionary-based algorithms proposed in [1], called probabilistic encoding. The potential of this encoding for complex problems is huge, as candidate solutions represent regions, instead of points, of the search space. We have tested in the context of gene expression biclustering problem, in a selection of a well-known expression matrix datasets. The results obtained for the experimental analysis reveals a satisfactory performance in comparison with other evolutionary-based algorithms, and a high exploration power in very large search spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [1], IEPR was named as MOBPEOC (Multi-Objective Biclustering with Probabilistic Encoding and Overlapping Control).

References

  1. Marcozzi, M., Divina, F., Aguilar-Ruiz, J.S., Vanhoof, W.: A novel probabilistic encoding for EAs applied to biclustering of microarray data. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 339–346. ACM, New York (2011)

    Google Scholar 

  2. Aguilar-Ruiz, J.S.: Shifting and scaling patterns from gene expression data. Bioinformatics 21, 3840–3845 (2005)

    Article  Google Scholar 

  3. Berrar, D.P., Dubitzky, W., Granzow, M.: A Practical Approach to Microarray Data Analysis. Springer Publishing Company, Incorporated, US (2003)

    Book  MATH  Google Scholar 

  4. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE Trans. Comput. Biol. Bioinform. 1, 24–25 (2004)

    Article  Google Scholar 

  5. Divina, F., Aguilar-Ruiz, J.S.: Biclustering of expression data with evolutionary computation. IEEE Trans. Knowl. Data Eng. 18(5), 590–602 (2006)

    Article  Google Scholar 

  6. Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression data. Pattern Recogn. 39(12), 2464–2477 (2006)

    Article  MATH  Google Scholar 

  7. Pontes, B., Giráldez, R., Aguilar-Ruiz, J.: Configurable pattern-based evolutionary biclustering of gene expression data. Algorithms Mol. Biol. 8(1), 1–22 (2013)

    Article  Google Scholar 

  8. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, pp. 93–103. AAAI Press (2000)

    Google Scholar 

  9. Yang, J., Wang, H., Wang, W., Yu, P.: Enhanced biclustering on expression data. In: Proceedings of the 3rd IEEE Symposium on BioInformatics and BioEngineering, BIBE 2003, p. 321. IEEE Computer Society, Washington, DC, USA (2003)

    Google Scholar 

  10. Pontes, B., Divina, F., Giráldez, R., Aguilar-Ruiz, J.S.: Improved biclustering on expression data through overlapping control. Int. J. Intell. Comput. Cybern. 3(2), 293–309 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cruz, C., González, J.R., Pelta, D.A.: Optimization in dynamic environments: a survey on problems, methods and measures. Soft Comput. 15(7), 1427–1448 (2011)

    Article  Google Scholar 

  12. Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence, vol. 1, pp. 82–87. IEEE (1994)

    Google Scholar 

  13. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Divina, F., Pontes, B., Giraldez, R., Aguilar-Ruiz, J.S.: An effective measure for assessing the quality of biclusters. Comput. Biol. Med. 42(2), 245–256 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the Spanish Ministry of Economy and Competitiveness under grants TIN2011-28956 and TIN2014-55894-C2-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Giráldez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gil-Cumbreras, F.J., Giráldez, R., Aguilar-Ruiz, J.S. (2016). Extending Probabilistic Encoding for Discovering Biclusters in Gene Expression Data. In: Martínez-Álvarez, F., Troncoso, A., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2016. Lecture Notes in Computer Science(), vol 9648. Springer, Cham. https://doi.org/10.1007/978-3-319-32034-2_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32034-2_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32033-5

  • Online ISBN: 978-3-319-32034-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics