Abstract
This contribution introduces an element of “aggressiveness” into the Floor-Field based model with adaptive time-span. The aggressiveness is understood as an ability to win conflicts and push through the crowd. From experiments it is observed that this ability is not directly correlated with the desired velocity in the free flow regime. The influence of the aggressiveness is studied by means of the dependence of the travel time on the occupancy of a room. A simulation study shows that the conflict solution based on the aggressiveness parameter can mimic the observations from the experiment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bandini, S., Crociani, L., Vizzari, G.: Heterogeneous pedestrian walking speed in discrete simulation models. In: Chraibi, M., Boltes, M., Schadschneider, A., Seyfried, A. (eds.) Traffic and Granular Flow ’13, pp. 273–279. Springer International Publishing, Cham (2015)
Bukáček, M., Hrabák, P.: Case study of phase transition in cellular models of pedestrian flow. In: Wąs, J., Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 508–517. Springer, Heidelberg (2014)
Bukáček, M., Hrabák, P., Krbálek, M.: Individual microscopic results of bottleneck experiments. In: Traffic and Granular Flow ’15. Springer International Publishing (2015, to appear). arXiv:1603.02019 [physics.soc-ph]
Bukáček, M., Hrabák, P., Krbálek, M.: Experimental analysis of two-dimensional pedestrian flow in front of the bottleneck. In: Chraibi, M., Boltes, M., Schadschneider, A., Seyfried, A. (eds.) Traffic and Granular Flow ’13, pp. 93–101. Springer International Publishing, Cham (2015)
Bukáček, M., Hrabák, P., Krbálek, M.: Cellular model of pedestrian dynamics with adaptive time span. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part II. LNCS, vol. 8385, pp. 669–678. Springer, Heidelberg (2014)
Bukáček, M., Hrabák, P., Krbálek, M.: Experimental study of phase transition in pedestrian flow. In: Daamen, W., Duives, D.C., Hoogendoorn, S.P. (eds.) Pedestrian and Evacuation Dynamics 2014, Transportation Research Procedia, vol. 2, pp. 105–113. Elsevier Science B.V. (2014)
Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys. A 295(3–4), 507–525 (2001)
Cornforth, D., Green, D.G., Newth, D.: Ordered asynchronous processes in multi-agent systems. Phys. D 204(1–2), 70–82 (2005)
Ezaki, T., Yanagisawa, D., Nishinari, K.: Analysis on a single segment of evacuation network. J. Cell. Automata 8(5–6), 347–359 (2013)
Hrabák, P., Bukáček, M., Krbálek, M.: Cellular model of room evacuation based on occupancy and movement prediction: comparison with experimental study. J. Cell. Automata 8(5–6), 383–393 (2013)
Ji, X., Zhou, X., Ran, B.: A cell-based study on pedestrian acceleration and overtaking in a transfer station corridor. Phys. A 392(8), 1828–1839 (2013)
Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Phys. A 312(1–2), 260–276 (2002)
Kłeczek, P., Wąs, J.: Simulation of pedestrians behavior in a shopping mall. In: Wąs, J., Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 650–659. Springer, Heidelberg (2014)
Kretz, T.: Pedestrian traffic, simulation and experiments. Ph.D. thesis, Universität Duisburg-Essen, Germany (2007)
Schadschneider, A., Chowdhury, D., Nishinari, K.: Stochastic Transport in Complex Systems: From Molecules to Vehicles. Elsevier Science B.V., Amsterdam (2010)
Spartalis, E., Georgoudas, I.G., Sirakoulis, G.C.: CA crowd modeling for a retirement house evacuation with guidance. In: Wąs, J., Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 481–491. Springer, Heidelberg (2014)
Yanagisawa, D., Kimura, A., Tomoeda, A., Nishi, R., Suma, Y., Ohtsuka, K., Nishinari, K.: Introduction of frictional and turning function for pedestrian outflow with an obstacle. Phys. Rev. E 80, 036110 (2009)
Acknowledgements
This work was supported by the Czech Science Foundation under grants GA13-13502S (P. Hrabák) and GA15-15049S (M. Bukáček). Further support was provided by the CTU grant SGS15/214/OHK4/3T/14.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Hrabák, P., Bukáček, M. (2016). Conflict Solution According to “Aggressiveness” of Agents in Floor-Field-Based Model. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds) Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science(), vol 9574. Springer, Cham. https://doi.org/10.1007/978-3-319-32152-3_47
Download citation
DOI: https://doi.org/10.1007/978-3-319-32152-3_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32151-6
Online ISBN: 978-3-319-32152-3
eBook Packages: Computer ScienceComputer Science (R0)